Skip to main content
Log in

J resistance behavior in functionally graded materials using cohesive zone and modified boundary layer models

  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

This paper describes elastic–plastic crack growth resistance simulation in a ceramic/metal functionally graded material (FGM) under mode I loading conditions using cohesive zone and modified boundary layer (MBL) models. For this purpose, we first explore the applicability of two existing, phenomenological cohesive zone models for FGMs. Based on these investigations, we propose a new cohesive zone model. Then, we perform crack growth simulations for TiB/Ti FGM SE(B) and SE(T) specimens using the three cohesive zone models mentioned above. The crack growth resistance of the FGM is characterized by the J-integral. These results show that the two existing cohesive zone models overestimate the actual J value, whereas the model proposed in the present study closely captures the actual fracture and crack growth behaviors of the FGM. Finally, the cohesive zone models are employed in conjunction with the MBL model. The two existing cohesive zone models fail to produce the desired KT stress field for the MBL model. On the other hand, the proposed cohesive zone model yields the desired KT stress field for the MBL model, and thus yields J R curves that match the ones obtained from the SE(B) and SE(T) specimens. These results verify the application of the MBL model to simulate crack growth resistance in FGMs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • J. Abanto-Bueno J. Lambros (2002) ArticleTitleInvestigation of crack growth in functionally graded materials using digital image correlation Engineering Fracture Mechanics 69 1695–1711 Occurrence Handle10.1016/S0013-7944(02)00058-9

    Article  Google Scholar 

  • G. Anlas M.H. Santare J. Lambros (2000) ArticleTitleNumerical calculation of stress intensity factors in functionally graded materials International Journal of Fracture 104 131–143 Occurrence Handle10.1023/A:1007652711735

    Article  Google Scholar 

  • Baylor, J. (1998). A numerical simulation of impact-induced damage of composite materials. Master Thesis, University of Illinois at Urbana-Champaign.

  • C. Betegon J.W. Hancock (1991) ArticleTitleTwo-parameter characterization of elastic-plastic crack-tip fields ASME Journal of Applied Mechanics 58 104–110 Occurrence Handle10.1115/1.2897135

    Article  Google Scholar 

  • Bilby B.A., Cardew G.E., Goldthorpe M.R. and Howard I.C. (1986). A finite element investigation of the effect of specimen geometry on the fields of stress and strain at the tip of stationary cracks. Size Effect in Fracture. Institute of Mechanical Engineers, 37–46.

  • G.T. Camacho M. Ortiz (1996) ArticleTitleComputational modeling of impact damage in brittle materials International Journal of Solids and Structures 33 2899–2938 Occurrence Handle0929.74101 Occurrence Handle10.1016/0020-7683(95)00255-3

    Article  MATH  Google Scholar 

  • Carpenter R.D., Liang W.W., Paulino G.H., Gibeling J.C. and Munir, Z.A. (1999). Fracture testing and analysis of a layered functionally graded Ti/TiB beam in 3-point bending. Materials Science Forum 308–311, 837–842.

  • W. Celes G.H. Paulino R. Espinha (2005) ArticleTitleA compact adjacency-based topological data structure for finite element mesh representation International Journal for Numerical Methods in Engineering 64 1529–1556 Occurrence Handle10.1002/nme.1440 Occurrence Handle1122.74504

    Article  MATH  Google Scholar 

  • J.W. Eischen (1987) ArticleTitleFracture of non-homogeneous materials International Journal of Fracture 34 3–22

    Google Scholar 

  • F. Erdogan (1995) ArticleTitleFracture mechanics of functionally graded materials Composites Engineering 5 753–770 Occurrence Handle10.1016/0961-9526(95)00029-M

    Article  Google Scholar 

  • P.H. Geubelle J. Baylor (1998) ArticleTitleImpact-induced delamination of laminated composites: a2D simulation Composites Part B Engineering 29 589–602 Occurrence Handle10.1016/S1359-8368(98)00013-4

    Article  Google Scholar 

  • A.E. Giannakopoulos S. Suresh M. Finot M. Olsson (1995) ArticleTitleElastoplastic analysis of thermal cycling: layered materials with compositional gradients Acta Metallurgica et Materialia 43 1335–1354 Occurrence Handle10.1016/0956-7151(94)00360-T

    Article  Google Scholar 

  • P. Gu R.J. Asaro (1997) ArticleTitleCrack deflection in functionally graded materials International Journal of Solids and Structures 34 3085–3098 Occurrence Handle0939.74591 Occurrence Handle10.1016/S0020-7683(96)00175-8

    Article  MATH  Google Scholar 

  • Gullerud, A.S., Koppenhoefer, K.C., Roy, Y.A., RoyChowdhury, S., Walters, M., Bichon, B., and Dodds Jr., R.H. (2004). WARP3D Release 15 Manual, Civil Engineering, Report No. UIUCENG-95-2012, University of Illinois at Urbana-Champaign.

  • Z.-H. Jin G.H. Paulino R.H. Dodds SuffixJr. (2002) ArticleTitleFinite element investigation of quasi-static crack growth in functionally graded materials using a novel cohesive zone fracture model ASME Journal of Applied Mechanics 69 370–379 Occurrence Handle1110.74499 Occurrence Handle10.1115/1.1467092

    Article  MATH  Google Scholar 

  • Z.-H. Jin G.H. Paulino R.H. Dodds SuffixJr. (2003) ArticleTitleCohesive fracture modeling of elastic-plastic crack growth in functionally graded materials Engineering Fracture Mechanics 70 1885–1912 Occurrence Handle10.1016/S0013-7944(03)00130-9

    Article  Google Scholar 

  • Z.-H. Jin R.H. Dodds SuffixJr. (2004) ArticleTitleCrack growth resistance behavior of a functionally graded material: computational studies Engineering Fracture Mechanics 71 1651–1672 Occurrence Handle10.1016/j.engfracmech.2003.08.002

    Article  Google Scholar 

  • S.S.V. Kandula J. Abanto-Bueno P.H. Geubelle J. Lambros (2005) ArticleTitleCohesive modeling of dynamic fracture in functionally graded materials International Journal of Fracture 132 275–296 Occurrence Handle10.1007/s10704-005-1207-0

    Article  Google Scholar 

  • J.-H. Kim G.H. Paulino (2002) ArticleTitleFinite element evaluation of mixed-mode stress intensity factors in functionally graded materials International Journal for Numerical Methods in Engineering 53 1903–1935 Occurrence Handle1169.74612 Occurrence Handle10.1002/nme.364

    Article  MATH  Google Scholar 

  • J.-H. Kim G.H. Paulino (2002) ArticleTitleIsoparametric graded finite elements for nonhomogeneous isotropic and orthotropic materials ASME Journal of Applied Mechanics 69 502–514 Occurrence Handle1110.74509 Occurrence Handle10.1115/1.1467094

    Article  MATH  Google Scholar 

  • J.-H. Kim G.H. Paulino (2003) ArticleTitleT-stress, mixed-mode stress intensity factors, and crack initiation angles in functionally graded materials: a unified approach using the interaction integral method Computer Methods in Applied Mechanics and Engineering 192 1463–1494 Occurrence Handle1173.74334 Occurrence Handle10.1016/S0045-7825(02)00652-7

    Article  MATH  Google Scholar 

  • J.-H. Kim G.H. Paulino (2004) ArticleTitleSimulation of crack propagation in functionally graded materials under mixed-mode and non-proportional loading International Journal of Mechanics and Materials in Design 1 63–94 Occurrence Handle1068.11014 Occurrence Handle10.1023/B:MAMD.0000035457.78797.c5

    Article  MATH  Google Scholar 

  • Klein, P.A., Foulk, J.W., Chen, E.P., Wimmer, S.A. and Gao, H. (2000). Physics-based modeling of brittle fracture: cohesive formulations and the application of meshfree methods. Sandia National Laboratory, Technical Report, SAND2001–8099

  • S.G. Larsson A.J. Carlsson (1973) ArticleTitleInfluence of non-singular stress terms and specimen geometry on small-scale yielding at crack tips in elastic-plastic materials Journal of the Mechanics and Physics of Solids 21 263–277 Occurrence Handle10.1016/0022-5096(73)90024-0 Occurrence Handle1973JMPSo..21..263L

    Article  ADS  Google Scholar 

  • H. Li J. Lambros B.A. Cheeseman M.H. Santare (2000) ArticleTitleExperimental investigation of the quasistatic fracture of functionally graded materials International Journal of Solids and Structures 37 3715–3732 Occurrence Handle0948.74505 Occurrence Handle10.1016/S0020-7683(99)00056-6

    Article  MATH  Google Scholar 

  • R.J. Moon M. Hoffman J. Hilden K.J. Bowman K.P. Trumble J. Rodel (2002) ArticleTitleR-curve behavior in alumina-zirconia composites with repeating graded layers Engineering Fracture Mechanics 69 1647–1665 Occurrence Handle10.1016/S0013-7944(02)00050-4

    Article  Google Scholar 

  • A. Needleman (1987) ArticleTitleA continuum model for void nucleation by inclusion debonding ASME Journal of Applied Mechanics 54 525–531 Occurrence Handle0626.73010 Occurrence Handle10.1115/1.3173064

    Article  MATH  Google Scholar 

  • A. Needleman (1990) ArticleTitleAn analysis of tensile decohesion along an interface Journal of the Mechanics and Physics of Solids 38 289–324 Occurrence Handle10.1016/0022-5096(90)90001-K Occurrence Handle1990JMPSo..38..289N

    Article  ADS  Google Scholar 

  • Nelson, G. and Ezis, A. (1996). Functionally graded material (FGM) armor in the TiB/Ti system (U). CERCOM Report.

  • M. Ortiz A. Pandolfi (1999) ArticleTitleFinite-deformation irreversible cohesive elements for three- dimensional crack propagation analysis International Journal for Numerical Methods in Engineering 44 1267–1282 Occurrence Handle0932.74067 Occurrence Handle10.1002/(SICI)1097-0207(19990330)44:9<1267::AID-NME486>3.0.CO;2-7

    Article  MATH  Google Scholar 

  • G.H. Paulino R.D. Carpenter W.W. Liang Z.A. Munir J.C. Gibeling (2001) ArticleTitleFracture testing and finite element modeling of pure Titanium Engineering Fracture Mechanics 68 1417–1432 Occurrence Handle10.1016/S0013-7944(01)00018-2

    Article  Google Scholar 

  • S. Rangaraj K. Kokini (2004) ArticleTitleA study of thermal fracture in functionally graded thermal barrier coatings using a cohesive zone model ASME Journal of Engineering Materials and Technology 126 103–115 Occurrence Handle10.1115/1.1631028

    Article  Google Scholar 

  • Y.A. Roy R.H. Dodds SuffixJr. (2001) ArticleTitleSimulation of ductile crack growth in thin aluminum panels using 3-D surface cohesive elements International Journal of Fracture 110 21–45 Occurrence Handle10.1023/A:1010816201891

    Article  Google Scholar 

  • D.-J. Shim G.H. Paulino R.H. Dodds SuffixJr. (2006) ArticleTitleA boundary layer framework considering material gradation effects Engineering Fracture Mechanics 73 593–615 Occurrence Handle10.1016/j.engfracmech.2005.09.007

    Article  Google Scholar 

  • D.-J. Shim G.H. Paulino R.H. Dodds SuffixJr. (2006) ArticleTitleEffect of material gradation on K-dominance of fracture specimens Engineering Fracture Mechanics 73 643–648 Occurrence Handle10.1016/j.engfracmech.2005.09.004

    Article  Google Scholar 

  • T. Siegmund A. Needleman (1997) ArticleTitleNumerical simulation of fast crack growth in brittle solids Journal of the Mechanics and Physics of Solids 42 1397–1434

    Google Scholar 

  • Tamura, I., Tomota,Y. and Ozawa, H. (1973). Strength and ductility of Fe-Ni-C alloys composed of austenite and martensite with various strength. Proceedings of the Third International Conference on Strength of Metals and Alloys, vol. 1, Cambridge: Institute of Metals, 611–615.

  • K. Tohgo T. Suzuki H. Araki (2005) ArticleTitleEvaluation of R-curve behavior of ceramic-metal functionally graded materials by stable crack growth Engineering Fracture Mechanics 72 2359–2372 Occurrence Handle10.1016/j.engfracmech.2005.03.006

    Article  Google Scholar 

  • V. Tvergaard (1990) ArticleTitleEffect of fiber debonding in a whisker-reinforced metal Materials Science and Engineering A 125 203–213 Occurrence Handle10.1016/0921-5093(90)90170-8

    Article  Google Scholar 

  • V. Tvergaard (2001) ArticleTitleCrack growth predictions by a cohesive zone model for ductile fracture Journal of the Mechanics and Physics of Solids 49 2191–2207 Occurrence Handle1093.74557 Occurrence Handle10.1016/S0022-5096(01)00030-8 Occurrence Handle2001JMPSo..49.2191T

    Article  MATH  ADS  Google Scholar 

  • V. Tvergaard (2002) ArticleTitleTheoretical investigation of the effect of plasticity on crack growth along a functionally graded region between dissimilar elastic-plastic solids Engineering Fracture Mechanics 69 1635–1645 Occurrence Handle10.1016/S0013-7944(02)00051-6

    Article  Google Scholar 

  • V. Tvergaard J.W. Hutchinson (1992) ArticleTitleThe relation between crack growth resistance and fracture process parameters in elastic-plastic solids Journal of the Mechanics and Physics of Solid 40 1377–1397 Occurrence Handle0775.73218 Occurrence Handle10.1016/0022-5096(92)90020-3 Occurrence Handle1992JMPSo..40.1377T

    Article  MATH  ADS  Google Scholar 

  • M.C. Walters G.H. Paulino R.H. Dodds SuffixJr. (2004) ArticleTitleStress intensity factors for surface cracks in functionally graded materials under mode I thermomechanical loading International Journal of Solids and Structures 41 1081–1118 Occurrence Handle1075.74535 Occurrence Handle10.1016/j.ijsolstr.2003.09.050

    Article  MATH  Google Scholar 

  • M.C. Walters G.H. Paulino R.H. Dodds SuffixJr. (2005) ArticleTitleInteraction-integral procedures for 3-D curved cracks including surface tractions Engineering Fracture Mechanics 72 1635–1663 Occurrence Handle10.1016/j.engfracmech.2005.01.002

    Article  Google Scholar 

  • M.C. Walters G.H. Paulino R.H. Dodds SuffixJr. (2006) ArticleTitleComputation of mixed-mode stress intensity factors for cracks in three-dimensional functionally-graded solids ASCE Journal of Engineering Mechanics 132 1–15 Occurrence Handle10.1061/(ASCE)0733-9399(2006)132:1(1)

    Article  Google Scholar 

  • R.L. Williamson B.H. Rabin J.T. Drake (1993) ArticleTitleFinite element analysis of thermal residual stresses at graded ceramic-metal interfaces, part I: model description and geometrical effects Journal of Applied Physics 74 1310–1320 Occurrence Handle10.1063/1.354910 Occurrence Handle1993JAP....74.1310W

    Article  ADS  Google Scholar 

  • L. Xia C.F. Shih (1995) ArticleTitleDuctile crack growth – I. A Numerical study using computational cells with microstructurally-based length scales Journal of the Mechanics and Physics of Solids 43 233–259 Occurrence Handle0879.73047 Occurrence Handle10.1016/0022-5096(94)00064-C Occurrence Handle1995JMPSo..43..233X

    Article  MATH  ADS  Google Scholar 

  • X. Xu A. Needleman (1996) ArticleTitleNumerical simulations of dynamic crack growth along an interface International Journal of Fracture 74 289–324 Occurrence Handle10.1007/BF00035845

    Article  Google Scholar 

  • P. Zavattieri H. Espinosa (2001) ArticleTitleGrain level model analysis of crack initiation and propagation in brittle materials Acta Materialia 49 4291–4311 Occurrence Handle10.1016/S1359-6454(01)00292-0

    Article  Google Scholar 

  • Zhang, Z. (2003). Cohesive zone modeling of dynamic failure in homogeneous and functionally graded materials. Master Thesis, University of Illinois at Urbana-Champaign.

  • Z. Zhang G.H. Paulino (2005) ArticleTitleCohesive zonemodeling of dynamic failure in homogenous and functionally graded materials International Journal of Plasticity 21 1195–1254 Occurrence Handle1154.74391 Occurrence Handle10.1016/j.ijplas.2004.06.009

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Glaucio H. Paulino.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shim, DJ., Paulino, G.H. & Dodds, R.H. J resistance behavior in functionally graded materials using cohesive zone and modified boundary layer models. Int J Fract 139, 91–117 (2006). https://doi.org/10.1007/s10704-006-0024-4

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10704-006-0024-4

Keywords

Navigation