Skip to main content
Log in

Strength and crack properties of nanoscale materials by ab initio molecular dynamics and temperature lattice Green’s function methods

  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

The crack nucleation and propagation processes in nanoscale materials are studied using the ab initio constraint molecular dynamics method and the lattice Green’s function method. We investigate the strength and fracture behaviors of carbon related nanoscale materials, especially the graphen sheets in comparison with those of carbon nanotubes. The linear elastic parameters, non-linear elastic instabilities, thermal lattice expansion and fracture behaviors are studied in detail. We will show that the thermodynamic and strength properties of the nanoscale materials exhibit characteristic features and they are different from those of the corresponding bulk materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • D.M. Esterling (1976) Journal of Applied Physics 47 486 Occurrence Handle10.1063/1.322648 Occurrence Handle1976JAP....47..486E

    Article  ADS  Google Scholar 

  • A. Hansson M. Paulsson S. Stafström (2000) ArticleTitlePhysical Review B 62 7639

    Google Scholar 

  • Harik, V. M. and Salas, M. D. (eds.) (2003). Trends in Nanoscale Mechanics. Kluwer Academic Publishers.

  • J. P. Hirth J. Lothe (1982) Theory of Dislocations Wiley New York

    Google Scholar 

  • V.V. Hung K. Masuda-Jindo (2000) Journal of Physical Society Japan 69 2067 Occurrence Handle10.1143/JPSJ.69.2067

    Article  Google Scholar 

  • S. Iijima (1991) Nature 354 56 Occurrence Handle10.1038/354056a0 Occurrence Handle1991Natur.354...56I

    Article  ADS  Google Scholar 

  • H. Kanzaki (1957) Journal of Physics and Chemistry of Solids 2 24 Occurrence Handle87377 Occurrence Handle10.1016/0022-3697(57)90003-3

    Article  MathSciNet  Google Scholar 

  • Liz-Marzán, L. M. and Kamlat, P. V. (eds.) (2003), Nanoscale Materials. Liuwer Academic.

  • Lockwood, D. J. (ed.) (2003). Semiconductor Nanocrystals. Kluwer Academic/Plenum.

  • A. J. Lu B.C. Pan (2004) Physical Review Letters 92 105504 Occurrence Handle10.1103/PhysRevLett.92.105504 Occurrence Handle2004PhRvL..92j5504L

    Article  ADS  Google Scholar 

  • K. Masuda-Jindo R. Kikuchi (2002) International Journal of Nanoscience 1 357–371 Occurrence Handle10.1142/S0219581X02000322

    Article  Google Scholar 

  • Masuda-Jindo K., Menon M., Hung V.V. (2001). Journal of Physics IV, France 5.

  • K. Masuda-Jindo S. Nishitani V. Hung ParticleVan (2004) ArticleTitlePhysical Review B 70 184122

    Google Scholar 

  • K. Masuda-Jindo V. K. Tewary R. Thomson (1987) Journal of Material Research 2 631 Occurrence Handle1987JMatR...2..631M

    ADS  Google Scholar 

  • K. Masuda-Jindo V. K. Tewary R. Thomson (1991) Journal of Material Research 6 1553 Occurrence Handle1991JMatR...6.1553M

    ADS  Google Scholar 

  • K. Masuda-Jindo V. Hung ParticleVan (2004a) Physical Mesomechanics 7 IssueID4 77

    Google Scholar 

  • K. Masuda-Jindo V. Hung ParticleVan (2004b) Journal of Physical Society of Japan 73 1205 Occurrence Handle10.1143/JPSJ.73.1205

    Article  Google Scholar 

  • K. Masuda-Jindo V. Hung ParticleVan M. Menon (2005) Physica status solidi (c) 2 IssueID6 1781 Occurrence Handle10.1002/pssc.200460503

    Article  Google Scholar 

  • K. Masuda-Jindo V. Hung ParticleVan P. Dinh Tam (2003) ArticleTitlePhysical Review B 67 094301

    Google Scholar 

  • T. J. Matsubara (1952) Journal of Physical Society of Japan 7 270 Occurrence Handle10.1143/JPSJ.7.270

    Article  Google Scholar 

  • M. Menon E. Richter K. R. Subbaswamy (1996) Journal of Chemical Physics 104 5875 Occurrence Handle10.1063/1.471319 Occurrence Handle1996JChPh.104.5875M

    Article  ADS  Google Scholar 

  • M.B. Nardelli B.I. Yakobson J. Bernholc (1998a) Physical Review B57 R4277 Occurrence Handle1998PhRvB..57.4277B

    ADS  Google Scholar 

  • M. B. Nardelli B. I. Yakobson J. Bernholc (1998b) Physical Review Letters 81 4656 Occurrence Handle10.1103/PhysRevLett.81.4656 Occurrence Handle1998PhRvL..81.4656N

    Article  ADS  Google Scholar 

  • R. W. Nunes D. Vanderbilt (1994) Physical Review B50 17611 Occurrence Handle1994PhRvB..5017611N

    ADS  Google Scholar 

  • V. K. Tewary (1973) Advance in Physics 22 757 Occurrence Handle10.1080/00018737300101389 Occurrence Handle1973AdPhy..22..757T

    Article  ADS  Google Scholar 

  • V. K. Tewary E. R. Fuller SuffixJr R. M. Thomson (1989) Journal of Material Research 4 309 Occurrence Handle1989JMatR...4..309T

    ADS  Google Scholar 

  • V. K. Tewary R. Thomson (1992) Journal of Material Research 7 1018 Occurrence Handle1992JMatR...7.1018T

    ADS  Google Scholar 

  • B. I. Yakobson (1998) Applied Physical Letters 72 918 Occurrence Handle10.1063/1.120873 Occurrence Handle1998ApPhL..72..918Y

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Masuda-Jindo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Masuda-Jindo, K., Van Hung, V. & Menon, M. Strength and crack properties of nanoscale materials by ab initio molecular dynamics and temperature lattice Green’s function methods. Int J Fract 139, 437–454 (2006). https://doi.org/10.1007/s10704-006-0022-6

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10704-006-0022-6

Keywords

Navigation