Skip to main content
Log in

Modelling of Surface Crack Growth under Lubricated Rolling–Sliding Contact Loading

  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

The paper describes modelling approach to computational simulation of surface crack growth subjected to lubricated rolling–sliding contact conditions. The model considers the size and orientation of the initial crack, normal and tangential loading due to rolling–sliding contact and the influence of fluid trapped inside the crack by a hydraulic pressure mechanism. The motion of the contact sliding load is simulated with different load cases. The strain energy density (SED) and maximum tangential stress (MTS) crack propagation criteria are modified to account for the influence of internal pressure along the crack surfaces due to trapped fluid. The developed model is used to simulate surface crack growth on a gear tooth flank, which has been also experimentally tested. It is shown that the crack growth path, determined with modified crack propagation criteria, is more accurately predicted than by using the criteria in its classical form.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aliabadi, M.H. and Rooke, D.P. (1991). Numerical Fracture Mechanics. Kluwer Academic Publishers.

  • M.R. Ayatollahi M.J. Pavier D.J. Smith (2002) ArticleTitleMode I cracks subjected to large T-stresses International Journal of Fracture 117 159–174 Occurrence Handle10.1023/A:1020973802643

    Article  Google Scholar 

  • J.W. Blake (1994) ArticleTitleFurther development of a predictive pitting model for gears: improvements in the life prediction analysis STLE Tribology Transactions 37 IssueID2 237–244

    Google Scholar 

  • S. Bogdanski M. Olzak J. Stupnicki (1996) ArticleTitleNumerical stress analysis of rail rolling contact fatigue cracks Wear 191 14–24 Occurrence Handle10.1016/0043-1648(95)06685-3

    Article  Google Scholar 

  • A.F. Bower (1988) ArticleTitleThe influence of crack face friction and trapped fluid on surface initiated rolling contact fatigue cracks Journal of Tribology 110 704–711

    Google Scholar 

  • Buchholz, F.G., Pirro, P.J.M., Richard, H.A. and Dreyer, K.H. (1987). Numerical and experimental mixed-mode analysis of a compact tension-shear-specimen. In: Numerical methods in Fracture Mechanics, Proceedings of the Fourth International Conference, San Antonio, Texas, USA, 641–656.

  • C.H. Chue H.H. Chung (2000) ArticleTitlePitting formation under rolling contact Theoretical and Applied Fracture Mechanics 34 1–9 Occurrence Handle10.1016/S0167-8442(00)00019-7

    Article  Google Scholar 

  • O.P. Datsyshyn V.V. Panasyuk (2001) ArticleTitlePitting of the rolling bodies contact surface Wear 251 1347–1355 Occurrence Handle10.1016/S0043-1648(01)00771-2

    Article  Google Scholar 

  • DIN 3990 (1987). Tragfähtigkeitsberechnungen von Stirnrädern. Beuth Verlag GMBH.

  • N.E. Dowling (1989) Mechanical Behaviour of Materials Prentice Hall Inc. New Jersey

    Google Scholar 

  • F. Erdogan G.C. Sih (1963) ArticleTitleOn the crack extension in plates under plane loading and transverse shear ASME Journal of Basic Engineering 85 525–527

    Google Scholar 

  • G. Fajdiga J. Flašker S. Glodež (2004) ArticleTitleThe influence of different parameters on surface pitting of contacting mechanical elements Engineering Fracture Mechanics 71 747–758 Occurrence Handle10.1016/S0013-7944(03)00022-5

    Article  Google Scholar 

  • M.F. Frolish D.I. Fletcher J.H. Beynon (2002) ArticleTitleA quantitative model for predicting the morphology of surface initiated rolling contact fatigue cracks in back-up roll steels Fatigue & Fracture of Engineering Materials & Structures 25 1037–1086

    Google Scholar 

  • S. Glodež Z. Ren J. Flašker (1998) ArticleTitleSimulation of surface pitting due to contact loading International Journal for Numerical Methods in Engineering 43 33–50 Occurrence Handle10.1002/(SICI)1097-0207(19980915)43:1<33::AID-NME410>3.0.CO;2-Z

    Article  Google Scholar 

  • T.K. Hellen W.S. Blackburn (1975) ArticleTitleThe calculation of stress intensity factors for combined tensile and shear loading International Journal of Fracture 11 IssueID4 605–617 Occurrence Handle10.1007/BF00116368

    Article  Google Scholar 

  • J.F. Joachin (1984) Untersuchungen zur Grüßchenbildung an Vergüteten und Normalisierten Zahnrädern TU München, Fakultät für Maschinenwesen München

    Google Scholar 

  • Johnson, K.L. (1994). Contact Mechanics. Cambridge University Press.

  • M. Kaneta H. Yatsuzuka Y. Murakami (1985) ArticleTitleMechanism of crack growth in lubricated rolling/sliding contact ASLE Transactions 28 IssueID3 407–414

    Google Scholar 

  • M. Kaneta Y. Murakami (1987) ArticleTitleEffect of oil hydraulic pressure on surface crack growth in rolling/sliding contact Tribology International 20 IssueID4 210–217 Occurrence Handle10.1016/0301-679X(87)90076-4

    Article  Google Scholar 

  • L.M. Keer M.D. Bryant (1983) ArticleTitleA pitting model for rolling contact fatigue ASME Journal of lubrication technology 105 198–205

    Google Scholar 

  • J.H. Kim G.H. Paulino (2003) ArticleTitleT-stress, mixed-mode stress intensity factors, and crack initiation angles in functionally graded materials: a unified approach using the interaction integral method Computer Methods in Applied Mechanics and Engineering 192 IssueID11–14 1463–1494 Occurrence Handle10.1016/S0045-7825(02)00652-7

    Article  Google Scholar 

  • G. Knauer (1988) Zur Grübchentragfähigkeit einsatzgehärteter Zahnräder TU München, Fakultät für Maschinenwesen München

    Google Scholar 

  • P.L. Ko S.S. Iyer H. Vaughan M. Gadala (2001) ArticleTitleFinite element modelling of crack growth and wear particle formation in sliding contact Wear 251 1265–1278 Occurrence Handle10.1016/S0043-1648(01)00780-3

    Article  Google Scholar 

  • M. Kosai A.S. Kobayashi M. Ramulu (1993) Tear straps in airplane fuselage S.N. Atluri C.E. Harris A. Hoggard N. Miller S.G. Sampath (Eds) Durability of Metal Aircraft Structures Atlanta Technology Atlanta, GA 443–457

    Google Scholar 

  • I.I. Kudish (2000) ArticleTitleNew statistical model of contact fatigue Tribology Transaction 43 IssueID4 711–721

    Google Scholar 

  • I.I. Kudish K.W. Burris (2004) ArticleTitleModeling of surface and subsurface crack behavior under contact load in the presence of lubricant International Journal of Fracture 125 IssueID1–2 125–147 Occurrence Handle10.1023/B:FRAC.0000021022.48417.a6

    Article  Google Scholar 

  • S.G. Larsson A.J. Carlsson (1973) ArticleTitleInfluence of non-singular stress terms and specimen geometry on small-scale yielding at crack tip in elastic-plastic solids Journal of Mechanics and Physics of Solids 21 263–277 Occurrence Handle10.1016/0022-5096(73)90024-0

    Article  Google Scholar 

  • I.L. Lim I.W. Johnston S.K. Choi (1992) ArticleTitleComparison between various displacement-based stress intensity factor computation techniques International Journal of Fracture 58 193–210 Occurrence Handle10.1007/BF00015615

    Article  Google Scholar 

  • K. Michaelis (1987) Die Integraltemperatur zur Beurteilung der Freßtragfähigkeit von Stirnradgetrieben TU München, Fakultät für Maschinenwesen München

    Google Scholar 

  • Y. Murakami C. Sakae K. Ichimaru T. Morita (1997) ArticleTitleExperimental and fracture mechanism study of the pit formation mechanism under repeated lubricated rolling–sliding contact: Effects of reversal of rotation and change of the driving roller Journal of Tribology 119 788–796

    Google Scholar 

  • D.R. Owen A.J. Fawkes (1983) Engineering Fracture Mechanics: Numerical Methods and Applications Pineridge Press Ltd. Swansea, U.K.

    Google Scholar 

  • Partheymüller, P. (1999). Numerische simulation der 3D-Rißausbreitung mit der Randelementmethode. Fortschritt-Berichte VDI 18 (242), VDI Verlag, Düsseldorf.

  • S. Pehan (1994) The Influence of Different Load Distribution on the Crack Propagation in Tooth Root (in Slovene) University of Maribor, Faculty of Mechanical Engineering Maribor, Slovenia

    Google Scholar 

  • Z. Ren S. Glodez G. Fajdiga M. Ulbin (2002) ArticleTitleSurface initiated crack growth simulation in moving lubricated contact Theoretical and Applied Fracture Mechanics 38 141–149 Occurrence Handle10.1016/S0167-8442(02)00091-5

    Article  Google Scholar 

  • J.W. Ringsberg A. Bergkvist (2003) ArticleTitleOn propagation of short rolling contact fatigue cracks Fatigue & Fracture of Engineering Materials & Structures 26 969–983

    Google Scholar 

  • U. Schedl (1998) Einfluß des Schmierstoffs auf die Grübchenlebensdauer einsatzgehärteter Zahnräder TU München, Fakultät für Maschinenwessen München

    Google Scholar 

  • A. Seweryn (1998) ArticleTitleA non-local stress and strain energy release rate mixed mode fracture initiation and propagation criteria Engineering Fracture Mechanics 59 IssueID6 737–760 Occurrence Handle10.1016/S0013-7944(97)00175-6

    Article  Google Scholar 

  • G.C. Sih (1974) ArticleTitleStrain energy density factor applied to mixed mode problems International Journal of Fracture 10 305–321 Occurrence Handle10.1007/BF00035493

    Article  Google Scholar 

  • Sih, G.C. (1980). Prediction of crack growth under mixed mode conditions. Proceedings of First USA-Greece symposium on Mixed Mode Propagation, Athens, Greece.

  • D.J. Smith M.R. Ayatollahi M.J. Pavier (2001) ArticleTitleThe role of T-stress in brittle fracture for linear elastic materials under mixed-mode loading Fatigue & Fracture of Engineering Materials & Structures 24 137–150

    Google Scholar 

  • M. Šraml (2001) Modelling of Contact Fatigue of Mechanical Elements in Slovene University of Maribor, Faculty of Mechanical Engineering Maribor, Slovenia

    Google Scholar 

  • Y. Ueda K. Ikeda T. Yao M. Aoki (1983) ArticleTitleCharacteristics of brittle failure under general combined modes including those under bi-axial tensile loads Engineering Fracture Mechanics 18 IssueID6 1131–1158 Occurrence Handle10.1016/0013-7944(83)90077-2

    Article  Google Scholar 

  • G.Z. Wang J.H. Chen G.H. Liu (2002) ArticleTitleOn the characteristic distance and minimum fracture toughness for cleavage fracture in a C–Mn steel International Journal of Fracture 118 57–76 Occurrence Handle10.1023/A:1022694607292

    Article  Google Scholar 

  • Weck, M., (1992) Moderne Leistungsgetriebe. Springer Verlag.

  • M.L. Williams (1957) ArticleTitleOn the stress distribution at the base of a stationary crack Journal of Applied Mechanics 24 109–114

    Google Scholar 

  • J.G. Williams P.D. Ewing (1972) ArticleTitleFracture under complex stress–the angled crack problem International Journal of Fracture 8 IssueID4 416–441

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boštjan Zafošnik.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zafošnik, B., Ren, Z., Flašker, J. et al. Modelling of Surface Crack Growth under Lubricated Rolling–Sliding Contact Loading. Int J Fract 134, 127–149 (2005). https://doi.org/10.1007/s10704-005-8546-8

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10704-005-8546-8

Keywords

Navigation