Skip to main content
Log in

Cohesive Fracture Model Based on Necking

  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

A linear hardening model together with a linear elastic background material is first used to discuss some aspects of the mathematical and physical limitations and constraints on cohesive laws. Using an integral equation approach together with the cohesive crack assumption, it is found that in order to remove the stress singularity at the tip of the cohesive zone, the cohesive law must have a nonzero traction at the initial zero opening displacement. A cohesive zone model for ductile metals is then derived based on necking in thin cracked sheets. With this model, the cohesive behavior including peak cohesive traction, cohesive energy density and shape of the cohesive traction–separation curve is discussed. The peak cohesive traction is found to vary from 1.15 times the yield stress for perfectly plastic materials to about 2.5 times the yield stress for modest hardening materials (power hardening exponent of 0.2). The cohesive energy density depends on the critical relative plate thickness reduction at the root of the neck at crack initiation, which needs to be determined by experiments. Finally, an elastic background medium with a center crack is employed to re-examine the shape effect of cohesive traction–separation curve, and the relation between the linear elastic fracture mechanics (LEFM) and cohesive zone models by considering the cohesive zone development and crack growth in the infinite elastic medium. It is shown that the shape of the cohesive curve does affect the cohesive zone size and the apparent energy release rate of LEFM for the crack growth in the elastic background material. The apparent energy release rate of LEFM approaches the cohesive energy density when the crack extends significantly longer than the characteristic length of the cohesive zone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • G.I. Barenblatt (1962) The mathematical theory of equilibrium cracks in brittle fracture. Advances in Applied Mechanics Academic Press New York 55–129

    Google Scholar 

  • R. Borst Particlede (2003) ArticleTitleNumerical aspects of cohesive zone models Engineering Fracture Mechanics 70 1743–1757 Occurrence Handle10.1016/S0013-7944(03)00122-X

    Article  Google Scholar 

  • P.W. Bridgman (1944) ArticleTitleThe stress distribution at the neck of a tension specimen Transactions of American Society for Metals 32 553–574

    Google Scholar 

  • P.W. Bridgman (1952) Studies in Large Plastic Flow and Fracture McGraw-Hill Book Company, Inc. New York

    Google Scholar 

  • W. Brocks P. Negre I. Scheider M. Schodel D. Steglich U. Zerbst (2003) ArticleTitleStructural integrity assessment by models of ductile crack extension in sheet metal Steel Research International 74 504–513

    Google Scholar 

  • B. Budiansky J.C. Amazigo A.G. Evans (1988) ArticleTitleSmall-scale crack bridging and the fracture toughness of particulate-reinforced ceramics Journal of the Mechanics and Physics of Solids 36 167–187 Occurrence Handle10.1016/S0022-5096(98)90003-5

    Article  Google Scholar 

  • G.T. Camacho M. Ortiz (1996) ArticleTitleComputational modeling of impact damage in brittle materials International Journal of Solids and Structures 33 2899–2938 Occurrence Handle10.1016/0020-7683(95)00255-3

    Article  Google Scholar 

  • D.S. Dugdale (1960) ArticleTitleYielding of steel sheets containing slits Journal of the Mechanics and Physics of Solids 8 100–104 Occurrence Handle10.1016/0022-5096(60)90013-2

    Article  Google Scholar 

  • M. Elices G.V. Guinea J. Gomez J. Planas (2002) ArticleTitleThe cohesive zone model: advantages, limitations and challenges Engineering Fracture Mechanics 69 137–163 Occurrence Handle10.1016/S0013-7944(01)00083-2

    Article  Google Scholar 

  • Falk, M.L., Needleman, A. and Rice, J.R. (2001). A critical evaluation of cohesive zone models of dynamic fracture. Journal de Physique IV 11, Pr5–43–50.

    Google Scholar 

  • M. Finot Y.-L. Shen A. Needleman S. Suresh (1994) ArticleTitleMicromechanical modeling of reinforcement fracture in plastic-reinforced metal-matrix composites Metallurgical and Materials Transactions 25A 2403–2420

    Google Scholar 

  • Hahn, G.T., Kanninen, M.F. and Rosenfield, A.R. (1969). Ductile crack extension and propagation in steel foil. In: Fracture 1969. Chapman and Hall Ltd., London, 58–72.

  • R. Hill (1950) The Mathematical Theory of Plasticity Clarendon Press Oxford

    Google Scholar 

  • A. Hillerborg M. Modeer P.E. Petersson (1976) ArticleTitleAnalysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements Cement and Concrete Research 6 773–782 Occurrence Handle10.1016/0008-8846(76)90007-7

    Article  Google Scholar 

  • Z.-H. Jin R.H. Dodds SuffixJr. (2004) ArticleTitleCrack growth resistance behavior of a functionally graded material: computational studies Engineering Fracture Mechanics 71 1651–1672 Occurrence Handle10.1016/j.engfracmech.2003.08.002

    Article  Google Scholar 

  • J.S. Ke H.W. Liu (1976) ArticleTitleThickness effect on crack tip deformation at fracture Engineering Fracture Mechanics 8 425–436 Occurrence Handle10.1016/0013-7944(76)90022-9

    Article  Google Scholar 

  • W.G. Knauss (1993) ArticleTitleTime dependent fracture and cohesive zones ASME Journal of Engineering Materials and Technology 115 262–267

    Google Scholar 

  • V.C. Li R.J. Ward (1989) A novel testing technique for post-peak tensile behaviour of cementitious materials H. Mihashi H. Takahashi F. H. Wittmann (Eds) Fracture Toughness and Fracture Energy – Testing Methods for Concrete and Rocks A.A. Balkema Publishers Rotterdam 183–195

    Google Scholar 

  • A. Nadai (1950) Theory of Flow and Fracture of Solids McGraw-Hill Book Company, Inc. New York

    Google Scholar 

  • A. Needleman (1972) ArticleTitleA numerical study of necking in circular cylindrical bars Journal of the Mechanics and Physics of Solids 20 111–127 Occurrence Handle10.1016/0022-5096(72)90035-X

    Article  Google Scholar 

  • A. Needleman (1987) ArticleTitleA continuum model for void nucleation by inclusion debonding ASME Journal of Applied Mechanics 54 525–531

    Google Scholar 

  • A. Needleman (1990) ArticleTitleAn analysis of tensile decohesion along an interface Journal of the Mechanics and Physics of Solids 38 289–324 Occurrence Handle10.1016/0022-5096(90)90001-K

    Article  Google Scholar 

  • O. Nguyen M. Ortiz (2002) ArticleTitleCoarse-graining and renormalization of atomistic binding relations and universal macroscopic cohesive behavior Journal of the Mechanics and Physics of Solids 50 1727–1741 Occurrence Handle10.1016/S0022-5096(01)00133-8

    Article  Google Scholar 

  • D.M. Norris SuffixJr. B. Moran J.K. Scudder D.F. Quinones (1978) ArticleTitleA computer simulation of the tension test Journal of the Mechanics and Physics of Solids 26 1–19 Occurrence Handle10.1016/0022-5096(78)90010-8

    Article  Google Scholar 

  • J.R. Rice (1968) Mathematical analysis in the mechanics of fracture H. Liebowitz (Eds) Fracture Academic Press New York 191–311

    Google Scholar 

  • Rooke, D.P. and Bradshaw, F.J. (1969). A study of crack tip deformation and derivation of fraction energy. In Fracture 1969. Chapman and Hall Ltd., London, 46–57.

  • J.H. Rose J. Ferrante J.R. Smith (1981) ArticleTitleUniversal binding energy curves for metals and bimetallic interfaces Physical Review Letters 47 675–678 Occurrence Handle10.1103/PhysRevLett.47.675

    Article  Google Scholar 

  • L.R.F. Rose (1986) ArticleTitleCrack reinforcement by distributed springs Journal of the Mechanics and Physics of Solids 35 383–405 Occurrence Handle10.1016/0022-5096(87)90044-5

    Article  Google Scholar 

  • Y.A. Roy R. H. Dodds SuffixJr. (2001) ArticleTitleSimulation of ductile crack growth in thin aluminum panels using 3-D surface cohesive elements International Journal of Fracture 110 21–45 Occurrence Handle10.1023/A:1010816201891

    Article  Google Scholar 

  • B.J. Schaeffer H.W. Liu J.S. Ke (1971) ArticleTitleDeformation and the strip necking zone in a cracked steel sheet Experimental Mechanics 11 172–175

    Google Scholar 

  • I. Scheider W. Brocks (2003) ArticleTitleThe effect of the traction separation law on the results of cohesive zone crack propagation analyses Key Engineering Materials 251-2 313–318

    Google Scholar 

  • B.F. Sørensen T.K. Jacobsen (2003) ArticleTitleDetermination of cohesive laws by the J integral approach Engineering Fracture Mechanics 70 1841–1858 Occurrence Handle10.1016/S0013-7944(03)00127-9

    Article  Google Scholar 

  • Z. Suo S. Ho X. Gong (1993) ArticleTitleNotch ductile-to-brittle transition due to localized inelastic band ASME Journal of Engineering Materials and Technology 115 319–326

    Google Scholar 

  • H. Tada P.C. Paris G.R. Irwin (2000) The Stress Analysis of Cracks Handbook ASME Press New York

    Google Scholar 

  • V. Tvergaard J.W. Hutchinson (1992) ArticleTitleThe relation between crack growth resistance and fracture process parameters in elastic-plastic solids Journal of the Mechanics and Physics of Solids 40 1377–1392 Occurrence Handle10.1016/0022-5096(92)90020-3

    Article  Google Scholar 

  • X.P. Xu A. Needleman (1994) ArticleTitleNumerical simulations of fast crack growth in brittle solids Journal of the Mechanics and Physics of Solids 42 1397–1434 Occurrence Handle10.1016/0022-5096(94)90003-5

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. T. Sun.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jin, Z.H., Sun, C.T. Cohesive Fracture Model Based on Necking. Int J Fract 134, 91–108 (2005). https://doi.org/10.1007/s10704-005-7864-1

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10704-005-7864-1

Keywords

Navigation