Skip to main content
Log in

Extended structural criterion for numerical simulation of crack propagation and coalescence under compressive loads

  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

An extension of the Neuber-Novozhilov structural fracture propagation criterion is presented for mode I (tensile) and mode II (shear) propagation under compressive loads. In addition to allowing numerical simulation of crack growth, the criterion can be used to model change of propagation mode, crack branching, and coalescence. The criterion can be applied effectively when the SIF is calculated accurately (at least three significant digits). A numerical method is suggested for this purpose that consists of complementing the complex variable hypersingular boundary element method (CVH-BEM) with special procedures for automatically tracing crack propagation and coalescence. The CVH-BEM code with the structural criterion has been used to investigate crack propagation in compression for both small and non-small fracture process zone (FPZ). The results of numerical experiments are in agreement with the analytical conclusions available for the case of small FPZ that indicates the possibility of three distinct patterns of crack propagation under external compressive loads. These are: (i) smooth curvilinear tensile (wing) cracks, (ii) stair-step propagation pattern with changing modes, and (iii) in plane shear propagation. The numerical study also indicates that when the critical size of the FPZ is large enough, the non-singular terms in the expansion of the stress functions strongly influence the crack trajectories. Specifically, this occurs when the size of the FPZ approaches a quarter of the half-length of the initial crack. Calculations for a closed initial crack in a half-space under compression illustrate the general features of crack propagation. Although the dominant direction of crack growth is that of the applied compressive stress, the pattern of propagation strongly depends on the particular geometry, critical size of the FPZ, and the ratio of shear-to-tensile microscopic strength.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bobet, A. (2001). Numerical simulation of initiation of tensile and shear cracks. Rock Mechanics in the National Interest. Proceedings of the 38th US Rock Mechanics Symposium. Swets & Zeitlinger Lisse, Tinucci and Heasley eds., 731–738.

  • A. Bobet H.H. Einstein (1998a) ArticleTitleFracture coalescence in rock-type materials under uniaxial and biaxial compression Int. J. Rock Mech. Min. Sci 35 863–888 Occurrence Handle10.1016/S0148-9062(98)00005-9

    Article  Google Scholar 

  • A. Bobet H.H. Einstein (1998b) ArticleTitleNumerical modeling of fracture coalescence in a model rock material Int. J. Fract 92 221–252 Occurrence Handle10.1023/A:1007460316400

    Article  Google Scholar 

  • De Bremaecker, J.-C. and Ferris, M.C. (2005). Numerical models of shear fracture propagation. Eng. Fracture Mech., 2004 (in press).

  • J-C. De Bremaecker M.A. Ferris D. Ralph (2000) ArticleTitleCompressional fractures considered as contact problems and mixed complementarity problems Eng. Fract. Mech 66 287–303 Occurrence Handle10.1016/S0013-7944(00)00022-9

    Article  Google Scholar 

  • G.P. Cherepanov (1996) ArticleTitlePropagation of cracks in compressed bodies J. Appl. Math. Mech. (English translation of Prikladnaia Matematika i Mekhanika) 30 96–109

    Google Scholar 

  • B. Cotterell J.R. Rice (1980) ArticleTitleSlightly curved or kinked cracks Int. J. Fract 16 155–168 Occurrence Handle10.1007/BF00012619

    Article  Google Scholar 

  • Dobroskok, A.A. (2003a). Numerical Simulation of Constitutive Equations for a Medium with Cracks and Contact Interaction. Ph. D. Thesis. Institute for Problems of Mechanical Engineering of Russian Academy of Sciences, Saint-Petersburg, (in Russian).

  • Dobroskok, A.A. (2003b). Crack growth near a free surface. Mathematical Modeling in Solid Mechanics. Boundary & Finite Elements Methods. Proceedings of the 20th International Conference. St-Petersburg, Postnov V. A. ed., 2, 184–187.

  • Dobroskok, A.A., Linkov, A.M., Myer, L. and Roegiers, J-C. (2001). On a new approach in micromechanics of solids and rocks. Mechanics in the National Interest. Proceedings of the 38th US Rock Mechanics Symposium. Swets & Zeitlinger Lisse. Tinucci and Heasley, eds., 1185–1190.

  • A.V. Dyskin (1997) ArticleTitleCrack growth criteria incorporating non-singular stresses: size effect in apparent fracture toughness Int. J. Fract 83 191–206 Occurrence Handle10.1023/A:1007304015524 Occurrence Handle1:CAS:528:DyaK2sXkvFyntb4%3D

    Article  CAS  Google Scholar 

  • A.V. Dyskin (1998) ArticleTitleStress fluctuation mechanism of mesocrack growth, dilatancy and failure of heterogeneous materials in uniaxial compression HERON 43 137–158

    Google Scholar 

  • A.V. Dyskin L.N. Germanovich K.B. Ustinov (1999) ArticleTitleA 3-D model of wing crack growth and interaction Eng. Fract. Mech 63 81–110 Occurrence Handle10.1016/S0013-7944(96)00115-4

    Article  Google Scholar 

  • Germanovich, L.N., Ring, L.M. and Carter B.J. et al. (1995). Simulation of crack growth and interaction in compression. Proceedings 8th Congress on Rock Mechanics. Balkema, Rotterdam, Fujii T. ed., 1, 219–226.

  • Griffith, A.A. (1924). The theory of rupture. Proceedings 1st International Congress Applied Mechanics, Delft, 1924, 55–63.

  • H. Horii S. Nemat-Nasser (1985) ArticleTitleCompression-induced microcrack growth in brittle solids: axial splitting and shear failure J. Geophys. Res 90 3105–3125

    Google Scholar 

  • A.R. Ingraffea F.E. Heuze (1980) ArticleTitleFinite element models for rock fracture mechanics Int. J. Numer. Anal. Methods Geomech 4 25–43

    Google Scholar 

  • P. Isaksson P. Stale (2002) ArticleTitlePrediction of shear crack growth direction under compressive loading and plane strain conditions Int. J. Fract 113 175–194 Occurrence Handle10.1023/A:1015581922242

    Article  Google Scholar 

  • I.P. Isupov S.E. Mikhailov (1998) ArticleTitleA comparative analysis of several nonlocal fracture criteria Arch. Appl. Mech 68 597–612

    Google Scholar 

  • M.L. Kachanov (1993) ArticleTitleElastic solids with many cracks and related problems Adv. Appl. Mech 30 259–445

    Google Scholar 

  • J.M. Kemeny N.G.W. Cook (1991) Micromechanics of Deformation in Rocks S.P. Shah (Eds) Toughness Mechanics in Quasi-Brittle Materials Kluwer Academic Publishers the Netherlands 155–188

    Google Scholar 

  • V.F. Koshelev A. Ghassemi (2003) Numerical modeling of stress distribution and crack trajectory near a fault or a natural fracture P.J. Culligan H.H. Einstein A.J. Whittle (Eds) Soil and Rock America 2003; 39th US Rock Mechanics Symposium Cambridge MA 931–936

    Google Scholar 

  • Linkov, A.M. (1994). Dynamic Phenomena in Mines and the Problem of Stability. Int. Soc. Rock Mech., Lisboa, Cedex, Portugal.

  • A.M. Linkov (2002) Boundary Integral Equations in Elasticity Theory Kluwer Academic Publishers Dordrecht-Boston-London

    Google Scholar 

  • S. Melin (1986) ArticleTitleWhen does a crack grow under mode II conditions? Int. J. Fract 30 103–114

    Google Scholar 

  • Mikhailov, S.E. (1995). A functional approach to non-local strength conditions and fracture criteria. – I. Body and point fracture. II. Discrete fracture. Eng. Fract. Mech., 52, 731–743, 745–754.

    Google Scholar 

  • S.G. Mogilevskaya L. Rothenburg M.B. Dusseault (2000) ArticleTitleGrowth of pressure-induced fractures in the vicinity of a wellbore Int. J. Fract 104 L25–L30 Occurrence Handle10.1023/A:1007637020233

    Article  Google Scholar 

  • N.F. Morozov Y.V. Petrov (1996) ArticleTitleOn the macroscopic parameters of brittle fracture Arch. Mech. Int. J 48 825–833 Occurrence Handle1:CAS:528:DyaK2sXjtFWhtA%3D%3D

    CAS  Google Scholar 

  • S. Nemat-Nasser H. Horii (1982) ArticleTitleCompression-induced nonplanar crack extension with application to splitting, exfoliation and rockburst J. Geophys. Res 87 6805–6821

    Google Scholar 

  • H. Neuber (1946) Theory of Notch Stresses J.W. Edwards Ann Arbor, Michigan

    Google Scholar 

  • V.V. Novozhilov (1969) ArticleTitleOn a necessary and sufficient criterion for brittle strength J. Appl Math. Mech. (English translation of Prikladnaia Matematika i Mekhanika) 33 201–210

    Google Scholar 

  • J.-P. Petit M. Barquins (1988) ArticleTitleCan natural faults propagate under mode II conditions? Tectonics 7 1243–1256

    Google Scholar 

  • Q. Rao Z. Sun O. Stephansson C. Li B. Stillborg (2003) ArticleTitleShear fracture (Mode II) of brittle rock Rock Mech. Mining Sci 40 355–375 Occurrence Handle10.1016/S1365-1609(03)00003-0

    Article  Google Scholar 

  • O. Reyes H.H. Einstein (1991) ArticleTitleFailure mechanism of fractured rock – a fracture coalescence model Proceedings of the 7th International Congress of Rock Mechanics 1 333–340

    Google Scholar 

  • A. Severin (1994) ArticleTitleBrittle fracture criterion for structure with sharp notches Eng. Fract. Mech 47 673–681 Occurrence Handle10.1016/0013-7944(94)90158-9

    Article  Google Scholar 

  • A. Severin Z. Mroz (1995) ArticleTitleA non-local stress failure condition for structural elements under multiaxial loading Eng. Fract. Mech 51 955–973 Occurrence Handle10.1016/0013-7944(94)00335-F

    Article  Google Scholar 

  • B. Shen O. Stephanson H.H. Einstein B. Ghahreman (1995) ArticleTitleCoalescence of fractures under shear stress in experiments J. Geophys. Res 100 5975–5990 Occurrence Handle10.1029/95JB00040

    Article  Google Scholar 

  • C.A. Tang P. Lin R.H.C. Wong K.T. Chau (2001) ArticleTitleAnalysis of crack coalescence in rock-like materials containing three flaws – Part II: numerical approach Int. J. Rock Mech. Min. Sci 38 925–939 Occurrence Handle10.1016/S1365-1609(01)00065-X

    Article  Google Scholar 

  • R.H.C. Wong K.T. Chau (1998) ArticleTitleCrack coalescence in rock-like material containing two cracks Int. J. Rock Mech. Min. Sci 35 147–164 Occurrence Handle10.1016/S0148-9062(97)00303-3

    Article  Google Scholar 

  • R.H.C. Wong K.T. Chau C.A. Tang P. Lin (2001) ArticleTitleAnalysis of crack coalescence in rock-like materials containing three flaws – Part I: experimental approach Int. J. Rock Mech. Min. Sci 38 909–924 Occurrence Handle10.1016/S1365-1609(01)00064-8

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Dobroskok.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dobroskok, A., Ghassemi, A. & Linkov, A. Extended structural criterion for numerical simulation of crack propagation and coalescence under compressive loads. Int J Fract 133, 223–246 (2005). https://doi.org/10.1007/s10704-005-4042-4

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10704-005-4042-4

Keywords

Navigation