Skip to main content
Log in

On Fractals and Size Effects

  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

Following an extensive and critical review of fractals and size effects models, this paper seeks to generalize Bažant’s size effect law to fractal cohesive cracks. This is achieved through a Newtonian approach in which the cohesive and far field stress intensity factors of fractal cracks (derived by Yavari) are set equal. It will be shown that the fractal size effect law is a generalization of the one of Bažant (derived in Euclidian space). In light of the derived equation, the multi-fractal model of Carpinteri and the size effect law of Bažant are revisited. Finally, the paper will conclude with some general considerations pertaining to the so-called “New Kind of Science” developed by Wolfram, and its applicability to fracture mechanics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • A. Balankin (1997) ArticleTitlePhysics of fracture and mechanics of self-affine cracks Engineering Fracture Mechanics 57 IssueID2/3 135–203

    Google Scholar 

  • G. Barenblatt (1962) ArticleTitleThe mathematical theory of equilibrium crack in the brittle fracture Advances in Applied Mechanics 7 55–125 Occurrence Handle26 #7213

    MathSciNet  Google Scholar 

  • Z. Bažant L. Cedolin (1991) Stability of Structures Oxford University Press Oxford

    Google Scholar 

  • Z.P. Bažant (1976) ArticleTitleInstability, ductility and size effect in strain softening concrete Journal of Engneering Mechenics ASCE 102 IssueID2 331–344

    Google Scholar 

  • Z.P. Bažant (1984) ArticleTitleSize effect in blunt fracture: concrete, rock, metal Jouranl of Engineering Mechanics, ASCE 110 IssueID4 518–535

    Google Scholar 

  • Z.P. Bažant (1997) ArticleTitleScaling of quasibrittle fraacture: asymptotic analysis Internation Journal of Fracture Mechanics 83 IssueID1 19–40

    Google Scholar 

  • Z.P. Bažant (2002) Scaling of Structural Strength Hermes Penton Science London

    Google Scholar 

  • Z.P. Bažant (2005) ArticleTitleScaling theory for quasibrittle structural failure Proceedings of National Academy of Sciences 101 IssueID37 13397–13399

    Google Scholar 

  • Z.P. Bažant M.T. Kazemi (1990) ArticleTitleDetermination of fracture energy, process zone length and brittleness number from size effect, with application to rock and concrete International Journal of Fracture 44 111–131

    Google Scholar 

  • Z.P. Bažant D. Novák (2000) ArticleTitleEnergetic-statistical size effect in quasibrittle failure at crack inititation. ACI Materials Journal 97 IssueID5 381–392

    Google Scholar 

  • Z.P. Bažant A. Yavari (2005) ArticleTitleIs the cause of size effect on structural strength fractal or energetic-statistical? Engineering Fracture Mechanics 72 1–31

    Google Scholar 

  • A. Carpinteri (1994) ArticleTitleScaling laws and renormlaization groups for strength and toughness disordered materials International Journal of Solids and Structures 31 IssueID3 291–302 Occurrence Handle10.1016/0020-7683(94)90107-4 Occurrence Handle0807.73050

    Article  MATH  Google Scholar 

  • Carpinteri, A. and Chiaia, B. (1994). Multifractal scaling law for the fracture energy variation of concrete structures. In: W. F.H. (ed.): Proceedings of Second International Conference on Fracture Mechanics of Concrete Structures FraMCoS2. Zurich, Switzerland, pp. 581–596, Aedificato.

  • A. Carpinteri B. Chiaia P. Cornetti (2003) ArticleTitleOn the mechanics of quasi-brittle materials with a fractal microstructure Engineering Fracture Mechanics 70 2321–2349

    Google Scholar 

  • A. Carpinteri B. Chiaia G. Ferro (1995) ArticleTitleSize effects on nominal tensile strength of concrete strucutres: multifractality of material ligaments and dimensional transition from order to disorder Materials and Structures 28 311–317

    Google Scholar 

  • G. Cherepanov (1979) Mechanics of Brittle Fracture McGraw-Hill New York

    Google Scholar 

  • G. Cusatis Z. Bažant L. Cedolin (2003) ArticleTitleConfinement-shear lattice model for concrete damage in tension and compression: I theory ASCE Journal of Engineering Mechanics 129 IssueID12 1439–1448

    Google Scholar 

  • D. Dugdale (1960) ArticleTitleYielding of steel sheets containing slits J. Mech. Phys. Sol. 8 100–108 Occurrence Handle10.1016/0022-5096(60)90013-2

    Article  Google Scholar 

  • A. Einstein (1905) ArticleTitleOn the movement of small particles suspended in stationary liquids required by the molecular-kinetic theory of heat Annalen der Physik 17 549–560 Occurrence Handle1905AnP....17..549E Occurrence Handle36.0975

    ADS  MATH  Google Scholar 

  • F. Engesser (1895) ArticleTitleÜber Knickfragen Schweizerische Bauzeitung 26 24–26

    Google Scholar 

  • J. Feder (1988) Fractals Plenum Press New York

    Google Scholar 

  • Galilei, G. (1638). Dialogues Concerning Two New Sciences. Dover Publications (1954) New York, NY. Originally published by Elzevir, The Neterlands, 1638.

  • A. Griffith (1921) ArticleTitleThe phenomena of rupture and flow in solids Phil. Trans. Roy. Soc. London A 221 163–197 Occurrence Handle1921RSPTA.221..163G

    ADS  Google Scholar 

  • A. Hillerborg M. Modéer P.E. Petersson (1976) ArticleTitleAnalysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements Cement and Concrete Research 6 IssueID6 773–782 Occurrence Handle10.1016/0008-8846(76)90007-7

    Article  Google Scholar 

  • H. Hurst (1951) ArticleTitleLong-term sorage capacity of reservoirs Transactions of the American Society of Civil Engineering 116 770–808

    Google Scholar 

  • C. Inglis (1913) ArticleTitleStresses in a plate due to the presence of cracks and sharp corners Trans. Inst. Naval Architects 55 219–241

    Google Scholar 

  • Irwin, G. (1960). Plastic zone near a crack and fracture toughness. In: Proceedings of 7th Sagamore Conf. p. 63.

  • J. Izquierdo-Encarnación (2003) ArticleTitleArs sine scientia nihil est Concrete International 25 IssueID5 7

    Google Scholar 

  • A. Kelly (1974) Strong Solids EditionNumberSecond Oxford University Press Oxford

    Google Scholar 

  • H.v. Koch (1904) ArticleTitleSur une courbe continue sans tangente, obtenue par une construction géométrique elémentaire Archiv för Matemat., Astron. och Fys 1 681–702 Occurrence Handle35.0387

    MATH  Google Scholar 

  • B. Mandelbrot (1983) The Fractal Geometry of Nature W.H. Freeman San Francisco

    Google Scholar 

  • B. Mandelbrot D. Passoja A. Paullay (1984) ArticleTitleFractal character of fracture surfaces of metals Nature 308 721–722 Occurrence Handle10.1038/308721a0

    Article  Google Scholar 

  • P. Paris F. Erdogan (1963) ArticleTitleA critical analysis of crack propagation laws Journal of Basic Engineering, ASME 85 IssueID3 528

    Google Scholar 

  • InstitutionalAuthorNameRILEM TC QFS (2004) ArticleTitleQuasibrittle fracture scaling and size effect Materials and Structures 37 IssueID272 547–568 Occurrence Handle10.1617/14109

    Article  Google Scholar 

  • V. Saouma C. Barton (1994) ArticleTitleFractals, fractures and size effects in concrete Journal of Engineering Mechanics of the American Society of Civil Engineers 120 IssueID4 835–854

    Google Scholar 

  • V. Saouma D. Natekar E. Hansen (2003) ArticleTitleCohesive stresses and size effects in elasto-plastic and quasi-brittle materials International Journal of Fracture 119 287–298 Occurrence Handle10.1023/A:1023968010028

    Article  Google Scholar 

  • V.E. Saouma C. Barton N. Gamal-El-Din (1990) ArticleTitleFractal characterization of cracked concrete surfaces Engineering Fracture Mechanics Journal 35 IssueID1 47–53

    Google Scholar 

  • D. Schertzer S. Lovejoy (1997) ArticleTitleUniversal multifractals do exist!: comments on a statistical analysis of mesoscale rainfall as a random cascade Journal of Applied Meteorology 36 1296–1303 Occurrence Handle10.1175/1520-0450(1997)036<1296:UMDECO>2.0.CO;2 Occurrence Handle1997JApMe..36.1296S

    Article  ADS  Google Scholar 

  • Sierpinski, W. (1912). Sur une nouvelle courbe continue qui remplit toute une aire plane. Bull. l’Acad. des Sciences Cracovie A pp. 462–478.

  • D. Turcotte (1992) Fractals and Chaos in Geology and Geophysics Cambridge University Press Cambridge

    Google Scholar 

  • A. Vashy (1892) ArticleTitleSur les Lois de similitude en physique Annales Télégraphiques 19 25–28

    Google Scholar 

  • J. Weiss (2001) ArticleTitleSelf-affinity of fracture surfaces and implications on a possible size effect on fracture geometry International Journal of Fracture 109 365–381 Occurrence Handle10.1023/A:1011078531887

    Article  Google Scholar 

  • Weisstein, E. (2004). Rule 150. From MathWorld–A Wolfram Web Resource, http://mathworld.wolfram.com/Rule150.html..

  • M. Wnuk J. Legat (2002) ArticleTitleWork of fracture and cohesive stress distribution resulting from triaxiality dependent cohesive zone model International Journal of Fracture 114 29–46 Occurrence Handle10.1023/A:1014880921017

    Article  Google Scholar 

  • M. Wnuk A. Yavari (2003) ArticleTitleOn estimating stress intensity factors and modulus of cohesion for fractal cracks Engineering Fracture Mechanics 70 1659–1674 Occurrence Handle10.1016/S0013-7944(02)00205-9

    Article  Google Scholar 

  • Wolfram, S. (2002). A New Kind of Science. Wolfram Media. (1197 pp.), Champaign, Ill.

  • A. Yavari S. Sarkani E. Moyer (2002) ArticleTitleThe mechanics of self-similar and self-affine fractal cracks International Journal of Fracture 114 1–27 Occurrence Handle10.1023/A:1014878112730

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. E. Saouma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saouma, V.E., Fava, G. On Fractals and Size Effects. Int J Fract 137, 231–249 (2006). https://doi.org/10.1007/s10704-005-3060-6

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10704-005-3060-6

Keywords

Navigation