Formal Methods in System Design

, Volume 44, Issue 1, pp 1–43 | Cite as

QoS-aware management of monotonic service orchestrations

  • Albert Benveniste
  • Claude Jard
  • Ajay Kattepur
  • Sidney Rosario
  • John A. Thywissen
Article

Abstract

We study QoS-aware management of service orchestrations, specifically for orchestrations having a data-dependent workflow. Our study supports multi-dimensional QoS. To capture uncertainty in performance and QoS, we provide support for probabilistic QoS. Under the above assumptions, orchestrations may be non-monotonic with respect to QoS, meaning that strictly improving the QoS of a service may strictly decrease the end-to-end QoS of the orchestration, an embarrassing feature for QoS-aware management. We study monotonicity and provide sufficient conditions for it. We then propose a comprehensive theory and methodology for monotonic orchestrations. Generic QoS composition rules are developed via a QoS Calculus, also capturing best service binding—service discovery, however, is not within the scope of this work.

Monotonicity provides the rationale for a contract-based approach to QoS-aware management. Although function and QoS cannot be separated in the design of complex orchestrations, we show that our framework supports separation of concerns by allowing the development of function and QoS separately and then “weaving” them together to derive the QoS-enhanced orchestration. Our approach is implemented on top of the Orc script language for specifying service orchestrations.

Keywords

Web services QoS Algebra Probabilistic models 

References

  1. 1.
    van der Aalst WMP (1997) Verification of workflow nets. In: ICATPN, pp 407–426 Google Scholar
  2. 2.
    van der Aalst WMP (1998) The application of Petri nets to workflow management. J Circuits Syst Comput 8(1):21–66. citeseer.ist.psu.edu/vanderaalst98application.html CrossRefGoogle Scholar
  3. 3.
    van der Aalst WMP, van Hee KM (2002) Workflow management: models, methods, and systems. MIT Press, Cambridge Google Scholar
  4. 4.
    van der Aalst WMP, ter Hofstede AHM, Kiepuszewski B, Barros AP (2003) Workflow patterns. Distrib Parallel Databases 14(1):5–51. doi:10.1023/A:1022883727209 CrossRefGoogle Scholar
  5. 5.
    Abundo M, Cardellini V, Presti FL (2011) Optimal admission control for a QoS-aware service-oriented system. In: ServiceWave, pp 179–190 Google Scholar
  6. 6.
    Bensoussan A (1992) Stochastic control of partially observable systems. Cambridge University Press, Cambridge CrossRefMATHGoogle Scholar
  7. 7.
    Alrifai M, Risse T (2009) Combining global optimization with local selection for efficient QoS-aware service composition. In: WWW, pp 881–890 Google Scholar
  8. 8.
    Ardagna D, Ghezzi C, Mirandola R (2008) Model driven QoS analyses of composed web services. In: Mähönen P, Pohl K, Priol T (eds) ServiceWave. Lecture notes in computer science, vol 5377. Springer, Berlin, pp 299–311 Google Scholar
  9. 9.
    Ardagna D, Giunta G, Ingraffia N, Mirandola R, Pernici B (2006) QoS-driven web services selection in autonomic grid environments. In: Meersman R, Tari Z (eds) OTM conferences. Lecture notes in computer science, vol 4276. Springer, Berlin, pp 1273–1289 Google Scholar
  10. 10.
    Ardagna D, Pernici B (2005) Global and local QoS guarantee in web service selection. In: Bussler C, Haller A (eds) Business process management workshops, vol 3812, pp 32–46 CrossRefGoogle Scholar
  11. 11.
    Bistarelli S, Montanari U, Rossi F, Santini F (2010) Unicast and multicast QoS routing with soft-constraint logic programming. ACM Trans Comput Log 12(1):5:1–5:48 CrossRefMathSciNetGoogle Scholar
  12. 12.
    Bistarelli S, Santini F (2009) A nonmonotonic soft concurrent constraint language for SLA negotiation. Electron Notes Theor Comput Sci 236:147–162 CrossRefGoogle Scholar
  13. 13.
    Bistarelli S, Santini F (2009) Soft constraints for quality aspects in service oriented architectures. In: Young researchers workshop on service-oriented computing, pp 51–65 Google Scholar
  14. 14.
    Bouillard A, Rosario S, Benveniste A, Haar S (2009) Monotonicity in service orchestrations. In: Franceschinis G, Wolf K (eds) Petri nets. Lecture notes in computer science, vol 5606. Springer, Berlin, pp 263–282 Google Scholar
  15. 15.
    Buscemi MG, Montanari U (2007) CC-Pi: a constraint-based language for specifying service level agreements. In: Proceedings of the 16th European conference on programming, ESOP’07. Springer, Berlin, pp 18–32. http://dl.acm.org/citation.cfm?id=1762174.1762179 Google Scholar
  16. 16.
    Buscemi MG, Montanari U (2011) QoS negotiation in service composition. J Log Algebr Program 80(1):13–24 CrossRefMATHMathSciNetGoogle Scholar
  17. 17.
    Calinescu R, Grunske L, Kwiatkowska M, Mirandola R, Tamburrelli G (2011) Dynamic QoS management and optimization in service-based systems. IEEE Trans Softw Eng 37(3):387–409 CrossRefGoogle Scholar
  18. 18.
    Cardellini V, Casalicchio E, Grassi V, Presti FL (2010) Adaptive management of composite services under percentile-based service level agreements. In: ICSOC 2010. Lecture notes in computer science, vol 6470, pp 381–395 Google Scholar
  19. 19.
    Cardoso J, Sheth AP, Miller JA (2002) Workflow quality of service. In: Kosanke K, Jochem R, Nell JG, Bas AO (eds) ICEIMT, IFIP conference proceedings, vol 236. Kluwer, Dordrecht, pp 303–311 Google Scholar
  20. 20.
    Cardoso J, Sheth AP, Miller JA, Arnold J, Kochut K (2004) Quality of service for workflows and web service processes. J Web Semant 1(3):281–308 CrossRefGoogle Scholar
  21. 21.
    Cook WR, Patwardhan S, Misra J (2006) Workflow patterns in Orc. In: Coordination, pp 82–96 Google Scholar
  22. 22.
    Esparza J, Römer S, Vogler W (2002) An improvement of McMillan’s unfolding algorithm. Form Methods Syst Des 20(3):285–310 CrossRefMATHGoogle Scholar
  23. 23.
    Baccelli F, Cohen G, Olsder GJ, Quadrat J-P (1992) Synchronization and linearity. Wiley series in probability and mathematical statistics. Wiley, New York MATHGoogle Scholar
  24. 24.
    Hwang SY, Wang H, Srivastava J, Paul RA (2004) A probabilistic QoS model and computation framework for web services-based workflows. In: ER, pp 596–609 Google Scholar
  25. 25.
    Hwang SY, Wang H, Tang J, Srivastava J (2007) A probabilistic approach to modeling and estimating the QoS of web-services-based workflows. Inf Sci 177(23):5484–5503 CrossRefMATHGoogle Scholar
  26. 26.
    Kattepur A (2011) Importance sampling of probabilistic contracts in web services. In: Kappel G, Maamar Z, Motahari-Nezhad HR (eds) ICSOC. Lecture notes in computer science, vol 7084. Springer, Berlin, pp 557–565 Google Scholar
  27. 27.
    Keller A, Ludwig H (2003) The WSLA framework: specifying and monitoring service level agreements for web services. J Netw Syst Manag 11(1) Google Scholar
  28. 28.
    Kiczales G, Lamping J, Mendhekar A, Maeda C, Lopes C, Loingtier MJ, Irwin J (1997) Aspect-oriented programming. In: ECOOP. Springer, Berlin Google Scholar
  29. 29.
    Kiselev I (2002) Aspect-oriented programming with AspectJ. Sams, Indianapolis Google Scholar
  30. 30.
    Kitchin D, Cook WR, Misra J (2006) A language for task orchestration and its semantic properties. In: Proceedings of the international conference on concurrency theory (CONCUR) Google Scholar
  31. 31.
    Marsan MA, Balbo G, Bobbio A, Chiola G, Conte G, Cumani A (1989) The effect of execution policies on the semantics and analysis of stochastic Petri nets. IEEE Trans Softw Eng 15(7):832–846 CrossRefGoogle Scholar
  32. 32.
    Menascé DA, Casalicchio E, Dubey VK (2008) A heuristic approach to optimal service selection in service oriented architectures. In: Avritzer A, Weyuker EJ, Woodside CM (eds) WOSP. ACM, New York, pp 13–24 CrossRefGoogle Scholar
  33. 33.
    Misra J, Cook WR (2006) Computation orchestration: a basis for wide-area computing. Softw Syst Model. doi:10.1007/s10270-006-0012-1 Google Scholar
  34. 34.
    Shaked M, Shanthikumar JG (1994) Stochastic orders and their applications. Academic Press, New York MATHGoogle Scholar
  35. 35.
    Shaked M, Shanthikumar JG (2007) Stochastic orders. Springer, Berlin CrossRefMATHGoogle Scholar
  36. 36.
    Murata T (1989) Petri nets: properties, analysis and applications. In: Proceedings of the IEEE, vol 77, pp 541–580 Google Scholar
  37. 37.
    Nicola R, Ferrari G, Montanari U, Pugliese R, Tuosto E (2005) A process calculus for QoS-aware applications. In: Jacquet JM, Picco GP (eds) Coordination models and languages. Lecture notes in computer science, vol 3454. Springer, Berlin, pp 33–48. doi:10.1007/11417019_3 CrossRefGoogle Scholar
  38. 38.
    OASIS (2007) Web services business process execution language version 2.0. http://docs.oasisopen.org/wsbpel/2.0/wsbpel-v2.0.pdf
  39. 39.
    Rosario S, Benveniste A, Haar S, Jard C (2007) Probabilistic QoS and soft contracts for transaction based web services. In: ICWS. IEEE Computer Society, Los Alamitos, pp 126–133 Google Scholar
  40. 40.
    Rosario S, Benveniste A, Haar S, Jard C (2008) Probabilistic QoS and soft contracts for transaction based web services orchestrations. IEEE Trans Service Comput 1(4) Google Scholar
  41. 41.
    Rosario S, Benveniste, A, Jard, C (2009) A theory of QoS for web service orchestrations. Research report RR-6951, INRIA. Available from http://hal.inria.fr/inria-00391592/PDF/RR-6951.pdf
  42. 42.
    Rosario S, Benveniste A, Jard C (2009) Flexible probabilistic QoS management of transaction based web services orchestrations. In: ICWS. IEEE, New York, pp 107–114 Google Scholar
  43. 43.
    Rosario S, Kitchin D, Benveniste A, Cook WR, Haar S, Jard C (2007) Event structure semantics of orc. In: Dumas M, Heckel R (eds) WS-FM. Lecture notes in computer science, vol. 4937. Springer, Berlin, pp 154–168 Google Scholar
  44. 44.
    Sato N, Trivedi KS (2007) Stochastic modeling of composite web services for closed-form analysis of their performance and reliability bottlenecks. In: Krämer BJ, Lin KJ, Narasimhan P (eds) ICSOC. Lecture notes in computer science, vol 4749. Springer, Berlin, pp 107–118 Google Scholar
  45. 45.
    Segala R, Lynch NA (1994) Probabilistic simulations for probabilistic processes. In: Jonsson B, Parrow J (eds) CONCUR. Lecture notes in computer science, vol 836. Springer, Berlin, pp 481–496 Google Scholar
  46. 46.
    Kamae T, Krengel U, O’Brien GL (1977) Stochastic inequalities on partially ordered spaces. Ann Probab 5(6):899–912 CrossRefMATHMathSciNetGoogle Scholar
  47. 47.
    Saaty TL (1990) How to make a decision: the analytic hierarchy process. Eur J Oper Res 48(2):9–26 CrossRefMATHGoogle Scholar
  48. 48.
    Yu Q, Bouguettaya A (2008) Framework for web service query algebra and optimization. ACM Trans Web 2(1) Google Scholar
  49. 49.
    Yu T, Lin KJ (2005) Service selection algorithms for composing complex services with multiple QoS constraints. In: Benatallah B, Casati F, Traverso P (eds) ICSOC. Lecture notes in computer science, vol 3826. Springer, Berlin, pp 130–143 Google Scholar
  50. 50.
    Zeng L, Benatallah B, Dumas M, Kalagnanam J, Sheng QZ (2003) Quality driven web services composition. In: WWW, pp 411–421 Google Scholar
  51. 51.
    Zeng L, Benatallah B, Ngu AHH, Dumas M, Kalagnanam J, Chang H (2004) QoS-aware middleware for web services composition. IEEE Trans Softw Eng 30(5):311–327 CrossRefGoogle Scholar
  52. 52.
    Zeng L, Ngu AHH, Benatallah B, Podorozhny RM, Lei H (2008) Dynamic composition and optimization of web services. Distrib Parallel Databases 24(1–3):45–72 CrossRefGoogle Scholar
  53. 53.
    Zheng H, Yang J, Zhao W, Bouguettaya A (2011) QoS analysis for web service compositions based on probabilistic QoS. In: Kappel G, Maamar Z, Motahari-Nezhad H (eds) Service-oriented computing, Lecture notes in computer science, vol 7084. Springer, Berlin, pp 47–61 Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Albert Benveniste
    • 1
  • Claude Jard
    • 2
  • Ajay Kattepur
    • 1
  • Sidney Rosario
  • John A. Thywissen
    • 3
  1. 1.DistribCom team at INRIA RennesRennes CedexFrance
  2. 2.Department of Computer ScienceUniversité de NantesNantes Cedex 3France
  3. 3.Department of Computer ScienceThe University of Texas at AustinAustinUSA

Personalised recommendations