Advertisement

Formal Methods in System Design

, Volume 42, Issue 2, pp 193–220 | Cite as

Weighted modal transition systems

  • Sebastian S. Bauer
  • Uli Fahrenberg
  • Line Juhl
  • Kim G. Larsen
  • Axel Legay
  • Claus Thrane
Article

Abstract

Specification theories as a tool in model-driven development processes of component-based software systems have recently attracted a considerable attention. Current specification theories are however qualitative in nature, and therefore fragile in the sense that the inevitable approximation of systems by models, combined with the fundamental unpredictability of hardware platforms, makes it difficult to transfer conclusions about the behavior, based on models, to the actual system. Hence this approach is arguably unsuited for modern software systems. We propose here the first specification theory which allows to capture quantitative aspects during the refinement and implementation process, thus leveraging the problems of the qualitative setting.

Our proposed quantitative specification framework uses weighted modal transition systems as a formal model of specifications. These are labeled transition systems with the additional feature that they can model optional behavior which may or may not be implemented by the system. Satisfaction and refinement is lifted from the well-known qualitative to our quantitative setting, by introducing a notion of distances between weighted modal transition systems. We show that quantitative versions of parallel composition as well as quotient (the dual to parallel composition) inherit the properties from the Boolean setting.

Keywords

Reducing complexity of design Modal specification Quantitative reasoning 

References

  1. 1.
    de Alfaro L, Faella M, Stoelinga M (2009) Linear and branching system metrics. IEEE Trans Softw Eng 35(2):258–273 CrossRefGoogle Scholar
  2. 2.
    de Alfaro L, Henzinger T (2005) Interface-based design. In: Broy M, Grünbauer J, Harel D, Hoare T (eds) Engineering theories of software intensive systems. NATO science series II: mathematics, physics and chemistry, vol 195. Springer, Berlin, pp 83–104 CrossRefGoogle Scholar
  3. 3.
    Aliprantis CD, Border KC (2007) Infinite dimensional analysis: a hitchhiker’s guide. Springer, Berlin Google Scholar
  4. 4.
    Antonik A, Huth M, Larsen KG, Nyman U, Wąsowski A (2008) 20 years of modal and mixed specifications. Bull Eur Assoc Theor Comput Sci 95:94–129 zbMATHGoogle Scholar
  5. 5.
    Basu A, Bensalem S, Bozga M, Caillaud B, Delahaye B, Legay A (2010) Statistical abstraction and model-checking of large heterogeneous systems. In: Hatcliff J, Zucca E (eds) FMOODS/FORTE. Lecture notes in computer science, vol 6117. Springer, Berlin, pp 32–46 Google Scholar
  6. 6.
    Bauer SS, Fahrenberg U, Juhl L, Larsen KG, Legay A, Thrane C (2011) Quantitative refinement for weighted modal transition systems. In: Murlak F, Sankowski P (eds) MFCS. Lecture notes in computer science, vol 6907. Springer, Berlin, pp 60–71 Google Scholar
  7. 7.
    Bauer SS, Juhl L, Larsen KG, Legay A, Srba J (2012) Extending modal transition systems with structured labels. Math Struct Comput Sci 22(4):581–617 MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Beneš N, Černá I, Křetínský J (2011) Modal transition systems: composition and LTL model checking. In: Bultan T, Hsiung P-A (eds) ATVA. Lecture notes in computer science, vol 6996. Springer, Berlin, pp 228–242 Google Scholar
  9. 9.
    Beneš N, Křetínský J, Larsen KG, Srba J (2009) Checking thorough refinement on modal transition systems is EXPTIME-complete. In: Leucker M, Morgan C (eds) ICTAC. Lecture notes in computer science, vol 5684. Springer, Berlin, pp 112–126 Google Scholar
  10. 10.
    Bonsangue MM, van Breugel F, Rutten JJMM (1998) Generalized metric spaces: completion, topology, and powerdomains via the Yoneda embedding. Theor Comput Sci 193(1–2):1–51 zbMATHCrossRefGoogle Scholar
  11. 11.
    Černý P, Henzinger TA, Radhakrishna A (2012) Simulation distances. Theor Comput Sci 413(1):21–35 zbMATHCrossRefGoogle Scholar
  12. 12.
    Chakrabarti A, de Alfaro L, Henzinger TA, Mang FYC (2002) Synchronous and bidirectional component interfaces. In: Brinksma E, Larsen KG (eds) CAV. Lecture notes in computer science, vol 2404. Springer, Berlin, pp 414–427 Google Scholar
  13. 13.
    Chatterjee K, de Alfaro L, Majumdar R, Raman V (2010) Algorithms for game metrics. Log Methods Comput Sci 6(3) Google Scholar
  14. 14.
    Chatterjee K, Doyen L, Henzinger TA (2010) Expressiveness and closure properties for quantitative languages. Log Methods Comput Sci 6(3) Google Scholar
  15. 15.
    STREP COMBEST (COMponent-Based Embedded Systems Design Techniques). http://www.combest.eu/home/
  16. 16.
    Condon A (1992) The complexity of stochastic games. Inf Comput 96(2):203–224 MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    David A, Larsen KG, Legay A, Nyman U, Wąsowski A (2010) Timed I/O automata: a complete specification theory for real-time systems. In: Johansson KH, Yi W (eds) HSCC. ACM, New York, pp 91–100 CrossRefGoogle Scholar
  18. 18.
    de Alfaro L (2003) Quantitative verification and control via the mu-calculus. In: Amadio RM, Lugiez D (eds) CONCUR. Lecture notes in computer science, vol 2761. Springer, Berlin, pp 102–126 Google Scholar
  19. 19.
    de Alfaro L, Henzinger TA, Majumdar R (2003) Discounting the future in systems theory. In: Baeten JCM, Karel Lenstra J, Parrow J, Woeginger GJ (eds) ICALP. Lecture notes in computer science, vol 2719. Springer, Berlin, pp 1022–1037 Google Scholar
  20. 20.
    de Alfaro L, Majumdar R, Raman V, Stoelinga M (2008) Game refinement relations and metrics. Log Methods Comput Sci 4(3) Google Scholar
  21. 21.
    Delahaye B (2010) Modular specification and compositional analysis of stochastic systems. PhD thesis, Université de Rennes 1 Google Scholar
  22. 22.
    Desharnais J, Gupta V, Jagadeesan R, Panangaden P (2004) Metrics for labelled Markov processes. Theor Comput Sci 318(3):323–354 MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    Droste M, Gastin P (2007) Weighted automata and weighted logics. Theor Comput Sci 380(1–2):69–86 MathSciNetzbMATHCrossRefGoogle Scholar
  24. 24.
    Droste M, Kuich W, Vogler H (2009) Handbook of weighted automata. EATCS monographs in theoretical computer science. Springer, Berlin zbMATHCrossRefGoogle Scholar
  25. 25.
    Droste M, Rahonis G (2009) Weighted automata and weighted logics with discounting. Theor Comput Sci 410(37):3481–3494 MathSciNetzbMATHCrossRefGoogle Scholar
  26. 26.
    Fahrenberg U, Larsen KG, Thrane C (2010) A quantitative characterization of weighted Kripke structures in temporal logic. Comput Inform 29(6+):1311–1324 MathSciNetGoogle Scholar
  27. 27.
    Fahrenberg U, Legay A, Thrane C (2011) The quantitative linear-time–branching-time spectrum. In: Chakraborty S, Kumar A (eds) FSTTCS. LIPIcs, vol 13. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, Leibniz, pp 103–114 Google Scholar
  28. 28.
    Fahrenberg U, Thrane C, Larsen KG (2011) Distances for weighted transition systems: games and properties. In: Massink M, Norman G (eds) QAPL. Electronic proceedings in theoretical computer science, vol 57, pp 134–147 Google Scholar
  29. 29.
    Hall RJ (2000) Feature interactions in electronic mail. In: Calder M, Magill EH (eds) FIW. IOS Press, Amsterdam, pp 67–82 Google Scholar
  30. 30.
    Juhl L, Larsen KG, Srba J (2012) Modal transition systems with weight intervals. J Log Algebr Program 81(4):408–421 MathSciNetzbMATHCrossRefGoogle Scholar
  31. 31.
    Larsen KG (1989) Modal specifications. In: Sifakis J (ed) Automatic verification methods for finite state systems. Lecture notes in computer science, vol 407. Springer, Berlin, pp 232–246 CrossRefGoogle Scholar
  32. 32.
    Larsen KG, Fahrenberg U, Thrane C (2011) Metrics for weighted transition systems: axiomatization and complexity. Theor Comput Sci 412(28):3358–3369 MathSciNetzbMATHCrossRefGoogle Scholar
  33. 33.
    Lawvere FW (1973) Metric spaces, generalized logic, and closed categories. Rend Semin Mat Fis Milano XLIII:135–166 MathSciNetCrossRefGoogle Scholar
  34. 34.
    William Lawvere F (1986) Taking categories seriously. Rev Colomb Mat XX:147–178 Google Scholar
  35. 35.
    Lynch N, Tuttle MR (1989) An introduction to input/output automata. Quart - Cent Wiskd Inform 2(3) Google Scholar
  36. 36.
    Majumdar R (2003) Symbolic algorithms for verification and control. PhD thesis, University of California, Berkeley Google Scholar
  37. 37.
    Nyman U (2008) Modal transition systems as the basis for interface theories and product lines. PhD thesis, Aalborg University Google Scholar
  38. 38.
    Raclet J-B (2008) Residual for component specifications. Electron Notes Theor Comput Sci 215:93–110 CrossRefGoogle Scholar
  39. 39.
    Davide S (2009) On the origins of bisimulation and coinduction. ACM Trans Program Lang Syst 31(4) Google Scholar
  40. 40.
    Sifakis J (2011) A vision for computer science—the system perspective. Cent. Eur. J. Comput. Sci. 1(1):108–116 CrossRefGoogle Scholar
  41. 41.
    SPEEDS (SPEculative and Exploratory Design in Systems Engineering). http://www.speeds.eu.com
  42. 42.
    Thrane C (2011) Quantitative models and analysis for reactive systems. PhD thesis, Aalborg University Google Scholar
  43. 43.
    Thrane C, Fahrenberg U, Larsen KG (2010) Quantitative simulations of weighted transition systems. J Log Algebr Program 79(7):689–703 MathSciNetzbMATHCrossRefGoogle Scholar
  44. 44.
    van Breugel F, (1994) Topological models in comparative semantics. PhD thesis, Vrije Universiteit, Amsterdam Google Scholar
  45. 45.
    van Breugel F, (1996) A theory of metric labelled transition systems. Ann NY Acad Sci 806(1):69–87 CrossRefGoogle Scholar
  46. 46.
    Zwick U, Paterson M (1995) The complexity of mean payoff games. In: Du D-Z, Li M (eds) COCOON. Lecture notes in computer science, vol 959. Springer, Berlin, pp 1–10 Google Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • Sebastian S. Bauer
    • 1
  • Uli Fahrenberg
    • 2
  • Line Juhl
    • 3
  • Kim G. Larsen
    • 3
  • Axel Legay
    • 2
  • Claus Thrane
    • 3
  1. 1.Ludwig-Maximilians-Universität MünchenMunichGermany
  2. 2.Irisa/INRIA RennesRennesFrance
  3. 3.Aalborg UniversityAalborgDenmark

Personalised recommendations