Skip to main content
Log in

Helmholtz Theorem and the V-Gauge in the Problem of Superluminal and Instantaneous Signals in Classical Electrodynamics

  • Original Article
  • Published:
Foundations of Physics Letters

Abstract

In this work we substantiate the applying of the Helmholtz vector decomposition theorem (H-theorem) to vector fields in classical electrodynamics. Using the H-theorem, within the framework of the two-parameter Lorentz-like gauge (so called v-gauge), we show that two kinds of magnetic vector potentials exist: one of them (solenoidal) can act exclusively with the velocity of light c and the other one (irrotational) with an arbitrary finite velocity v (including a velocity more than c). We show also that the irrotational component of the electric field has a physical meaning and can propagate exclusively instantaneously.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. 1. K.-H. Yang, “Gauge transformations and quantum mechanics II. Physical interpretation of classical gauge trasformations,” Ann. Phys. 101, 97 (1976).

    Google Scholar 

  2. 2. G. J. N. Brown and D. S. F Crothers, “Generalised gauge invariance of electromagnetism,” J. Phys A: Math. Gen. 22, 2939 (1989).

    Article  ADS  MathSciNet  Google Scholar 

  3. 3. J. D. Jackson, “From Lorentz to Coulomb and other explicit gauge transformations,” Am. J. Phys. 70, 917 (2002).

    Google Scholar 

  4. 4. A. E. Chubykalo and V. V. Onoochin, “On the theoretical possibility of the electromagnetic scalar potential wave spreading with an arbitrary velocity in vacuum,” Hadronic J. 25, 597 (2002).

    MathSciNet  Google Scholar 

  5. 5. V. P. Dmitriev, “On vector potential of the Coulomb gauge,” Eur.J. Phys. 25, L23 (2004).

    MATH  MathSciNet  Google Scholar 

  6. 6. W. Heitmann and G. Nimtz, Phys. Lett. A 196, 154 (1994).

    ADS  Google Scholar 

  7. 7. A. M. Steinberg, P. G. Kwait and R. I. Chiao, Phys. Rev. Lett. 71, 708 (1993).

    Article  ADS  Google Scholar 

  8. 8. A. Ranfagni, P. Fabeni, G. Pazzi and D. Mugnai, Phys. Rev. E 48, 1453 (1993).

    Article  ADS  Google Scholar 

  9. 9. C. Spielmann, R. Szipocs, A. Stingl and F. Rrausz, Phys. Rev. Lett. 73, 2308 (1994).

    Article  ADS  Google Scholar 

  10. 10. W. Tittel et al., Phys. Rev. Lett. 81, 3563 (1998).

    Article  ADS  Google Scholar 

  11. 11. D. Mugnai, A. Ranfagni and R. Ruggeri, Phys. Rev. Lett. 84, 4830 (2000).

    Article  ADS  Google Scholar 

  12. 12. A. E. Chubykalo and R. Smirnov-Rueda, “Action at a distance as a full-value solution of Maxwell equations: basis and application of separated potential's method,” Phys. Rev. E 53, 5373 (1996), “Convection displacement current and generalized form of Maxwell-Lorentz equation,” Mod. Phys. Lett. A 12, 1 (1997).

    Article  ADS  MathSciNet  Google Scholar 

  13. 13. A. E. Chubykalo and S. J. Vlaev, “Necessity of simultaneous co-existence of instantaneous and retarded interactions in classic electrodynamics,” Int. J. Mod. Phys. A 14, 3789 (1999).

    ADS  MathSciNet  Google Scholar 

  14. 14. R. Smirnov-Rueda, “On two complementary types of total time derivative in classical field theories and Maxwell's equations,” Found. Phys. 35(10), 36 (2005); 35(1), 1 (2005).

    Article  MathSciNet  Google Scholar 

  15. 15. J. A. Heras, “Comment on “Causality, the Coulomb field, and Newton's law of gravitation” by F. Rohrlich [Am. J. Phys. 70 (4), 411–414 (2002)],” Am. J. Phys. 71, 729 (2002).

    Google Scholar 

  16. 16. F. Rohrlich, “The validity of the Helmholtz theorem,” Am. J. Phys. 72(3), 412 (2004).

    Article  MathSciNet  Google Scholar 

  17. 17. G. B. Arfken and H. J. Weber, Mathematical Methods for Physicists, 4th edn. (Academic, New York, 1995), §1.16 92.

    Google Scholar 

  18. 18. F. Rohrlich, “Causality, the Coulomb field, and Newton's law of gravitation,” Am. J. Phys 70, 411 (2002).

    ADS  Google Scholar 

  19. 19. A. N. Tikhonov and A. A. Samarski, Equations of Mathematical Physics (Dover, New York, 1990), p. 433.

    Google Scholar 

  20. 20. P. A. M. Dirac, Direction in Physics (Wiley, New York, 1978), p. 32.

    Google Scholar 

  21. 21. E. Recami, F. Fontana and R. Caravaglia, “Special relativity and superluminal motions: Discussion of some recent experiments,” Int. J. of Mod. Phys. A 15, 2793 (2000).

    ADS  Google Scholar 

  22. 22. G. A. Kotel'nikov, “On the electrodynamics with faster-than-light motion,” in Has the Last Word Been Said on Classical Electrodynamics? - Hew horizons, A. Chubykalo et al., eds. (Rinton, Princeton, 2004), p 71; “On the possibility of faster-than-light motions in nonlinear electrodynamics,” Proceedings of Institute of Mathematics of NAS of Ukraine 50, Part 2, 835 (2004).

    Google Scholar 

  23. 23. V. V. Dvoeglazov, “Essay on non-Maxwellian theories of electromagnetism,” Hadronic J. Suppl. 12, 241 (1997).

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Chubykalo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chubykalo, A., Espinoza, A., Flores, R. et al. Helmholtz Theorem and the V-Gauge in the Problem of Superluminal and Instantaneous Signals in Classical Electrodynamics. Found Phys Lett 19, 37–49 (2006). https://doi.org/10.1007/s10702-006-1847-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10702-006-1847-y

Key words:

Navigation