Vacuum Instability

NAbstract

Following fresh attempts to resolve the problem of the energy density of the vacuum, we reconsider the case where the cosmological constant is derived from a higher-dimensional version of general relativity, and interpret the gauge-dependence of Λ as a dynamical effect. This leads to a relation between the change in Λ and the line element (action) which is independent of gauge choices and fundamental constants: dΛds2 = −6. This implies that the (classical) vacuum is unstable, with implications for particle production.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    1. T. Padmanabhan, Phys. Rep. 380, 235 (2003).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  2. 2.

    2. T. Padmanabhan, Class. Quant. Grav. 19, 5387 (2002).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  3. 3.

    3. B. Mashhoon and P. S. Wesson, Class. Quant. Grav. 21, 3611 (2004).

    Article  ADS  MathSciNet  Google Scholar 

  4. 4.

    4. B. Mashhoon, H. Liu, and P. S. Wesson, Phys. Lett B 331, 305 (1994).

    Article  ADS  Google Scholar 

  5. 5.

    5. P. West, Introduction to Supersymmetry and Supergravity (World Scientific, Singapore, 1986). M. B. Green, J. H. Schwarz, and E. Witten, Superstring Theory (Cambridge University Press, Cambridge, 1987).

    Google Scholar 

  6. 6.

    6. L. Randall and R. Sundrum, Mod. Phys. Lett. A 13, 2807 (1998). N. Arkani-Hamed, S. Dimopoulos, and G. R. Dvali, Phys. Lett. B 429, 263 (1998). R. Maartens, gr-qc/0312059 (2003).

    Article  Google Scholar 

  7. 7.

    7. P. S. Wesson, Space-Time-Matter (World Scientific, Singapore, 1999).

    Google Scholar 

  8. 8.

    8. J. Ponce de Leon, Mod. Phys. Lett. A 16, 2291 (2001). J. Ponce de Leon, Int. J. Mod. Phys. D 11, 1355 (2002).

    Article  ADS  MathSciNet  Google Scholar 

  9. 9.

    9. B. Mashhoon, P. S. Wesson, and H. Liu, Gen. Rel. Grav. 30, 555 (1998). P. S. Wesson, B. Mashhoon, H. Liu, and W. N. Sajko, Phys. Lett. B 456, 34 (1999). D. Youm, Phys. Rev. D 62, 084002 (2000). J. Ponce de Leon, Grav. Cos. 8, 272 (2002). J. Ponce de Leon, Int. J. Mod. Phys. D 12, 757 (2003). J. Ponce de Leon, J. Gen. Rel. Grav. 36, 1335 (2004).

    Article  ADS  MathSciNet  Google Scholar 

  10. 10.

    10. S. S. Seahra and P.S. Wesson, Gen. Rel. Grav. 33, 1731 (2001). D. Youm, Mod. Phys. Lett. A16, 2371 (2001).

    Article  ADS  MathSciNet  Google Scholar 

  11. 11.

    11. J. Campbell, A Course on Differential Geometry (Clarendon Press, Oxford, 1926). S. S. Seahra and P. S. Wesson, Class. Quant. Grav. 20, 1321 (2003).

    Google Scholar 

  12. 12.

    12. E. A. Matute, Class. Quant. Grav. 14, 2771 (1997). H. Liu and P.S. Wesson, Int. J. Mod. Phys. D 7, 737 (1998). F. Mansouri, hep-th/0203150 (2002). P. S. Wesson, Class. Quant. Grav. 19, 2825 (2002).

    Article  ADS  MATH  MathSciNet  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Paul S. Wesson.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Wesson, P. Vacuum Instability. Found Phys Lett 19, 285–291 (2006). https://doi.org/10.1007/s10702-006-0519-2

Download citation

Key words:

  • cosmological-constant problem
  • higher-dimensional field theory
  • particle production