Advertisement

Foundations of Physics Letters

, Volume 19, Issue 3, pp 285–291 | Cite as

Vacuum Instability

  • Paul S. Wesson
Original Article

NAbstract

Following fresh attempts to resolve the problem of the energy density of the vacuum, we reconsider the case where the cosmological constant is derived from a higher-dimensional version of general relativity, and interpret the gauge-dependence of Λ as a dynamical effect. This leads to a relation between the change in Λ and the line element (action) which is independent of gauge choices and fundamental constants: dΛds2 = −6. This implies that the (classical) vacuum is unstable, with implications for particle production.

Key words:

cosmological-constant problem higher-dimensional field theory particle production 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    1. T. Padmanabhan, Phys. Rep. 380, 235 (2003).CrossRefADSzbMATHMathSciNetGoogle Scholar
  2. 2.
    2. T. Padmanabhan, Class. Quant. Grav. 19, 5387 (2002).CrossRefADSzbMATHMathSciNetGoogle Scholar
  3. 3.
    3. B. Mashhoon and P. S. Wesson, Class. Quant. Grav. 21, 3611 (2004).CrossRefADSMathSciNetGoogle Scholar
  4. 4.
    4. B. Mashhoon, H. Liu, and P. S. Wesson, Phys. Lett B 331, 305 (1994).CrossRefADSGoogle Scholar
  5. 5.
    5. P. West, Introduction to Supersymmetry and Supergravity (World Scientific, Singapore, 1986). M. B. Green, J. H. Schwarz, and E. Witten, Superstring Theory (Cambridge University Press, Cambridge, 1987).Google Scholar
  6. 6.
    6. L. Randall and R. Sundrum, Mod. Phys. Lett. A 13, 2807 (1998). N. Arkani-Hamed, S. Dimopoulos, and G. R. Dvali, Phys. Lett. B 429, 263 (1998). R. Maartens, gr-qc/0312059 (2003).CrossRefGoogle Scholar
  7. 7.
    7. P. S. Wesson, Space-Time-Matter (World Scientific, Singapore, 1999).Google Scholar
  8. 8.
    8. J. Ponce de Leon, Mod. Phys. Lett. A 16, 2291 (2001). J. Ponce de Leon, Int. J. Mod. Phys. D 11, 1355 (2002).CrossRefADSMathSciNetGoogle Scholar
  9. 9.
    9. B. Mashhoon, P. S. Wesson, and H. Liu, Gen. Rel. Grav. 30, 555 (1998). P. S. Wesson, B. Mashhoon, H. Liu, and W. N. Sajko, Phys. Lett. B 456, 34 (1999). D. Youm, Phys. Rev. D 62, 084002 (2000). J. Ponce de Leon, Grav. Cos. 8, 272 (2002). J. Ponce de Leon, Int. J. Mod. Phys. D 12, 757 (2003). J. Ponce de Leon, J. Gen. Rel. Grav. 36, 1335 (2004).CrossRefADSMathSciNetGoogle Scholar
  10. 10.
    10. S. S. Seahra and P.S. Wesson, Gen. Rel. Grav. 33, 1731 (2001). D. Youm, Mod. Phys. Lett. A16, 2371 (2001).CrossRefADSMathSciNetGoogle Scholar
  11. 11.
    11. J. Campbell, A Course on Differential Geometry (Clarendon Press, Oxford, 1926). S. S. Seahra and P. S. Wesson, Class. Quant. Grav. 20, 1321 (2003).Google Scholar
  12. 12.
    12. E. A. Matute, Class. Quant. Grav. 14, 2771 (1997). H. Liu and P.S. Wesson, Int. J. Mod. Phys. D 7, 737 (1998). F. Mansouri, hep-th/0203150 (2002). P. S. Wesson, Class. Quant. Grav. 19, 2825 (2002).CrossRefADSzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • Paul S. Wesson
    • 1
  1. 1.Department of PhysicsUniversity of WaterlooWaterloo, OntarioCanada

Personalised recommendations