Skip to main content
Log in

The Schwarzschild Black Hole as a Point Particle

  • Original Article
  • Published:
Foundations of Physics Letters

Abstract

The description of a point mass in general relativity (GR) is given in the framework of the field formulation of GR, where all the dynamical fields, including the gravitational field, are considered in a fixed background spacetime. With the use of stationary (not static) coordinates, non-singular at the horizon, the Schwarzschild solution is presented as a point-like field configuration in a whole background Minkowski space. The requirement of a stable η-causality stated recently by J. B. Pitts and W. C. Schieve (Found. Phys. 34, 211 (2004)) is used essentially as a criterion for testing configurations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. 1. S. W. Hawking, Plenary Lecture at GR17, Dublin, July 2004.

  2. 2. L. D. Landau and E. M. Lifshitz, The Classical Theory of Fields (Pergamon, Oxford, 1975).

    Google Scholar 

  3. 3. J. V. Narlikar, “Some conceptual problems in general relativity and cosmology,” in A Random Walk in Relativity and Cosmology, N. Dadhich, J. Krishna Rao, J. V. Narlikar, and C. V. Vishevara, eds. (Wiley Eastern, New Delhi, 1985) pp. 171–183.

    Google Scholar 

  4. 4. A. N. Petrov and J. V. Narlikar, Found. Phys. 26, 1201 (1996); Erratum; Found. Phys. 28, 1023 (1998).

    Google Scholar 

  5. 5. L. P. Grishchuk, A. N. Petrov, and A. D. Popova, Commun. Math. Phys. 94 379 (1984).

    Article  Google Scholar 

  6. 6. A. D. Popova and A. N. Petrov, Int. J. Mod. Phys. A 3, 2651 (1988).

    Article  Google Scholar 

  7. 7. A. N. Petrov, Class. Quantum Grav. 10, 2663 (1993).

    Article  Google Scholar 

  8. 8. S. Deser, Gen. Relat. Grav. 1, 9 (1970); arXiv: gr-qc/0411023.

    Article  Google Scholar 

  9. 9. R. H. Kraichnan, Phys. Rev. D 98, 1118 (1955).

    Article  Google Scholar 

  10. 10. C. W. Misner, K. S. Thorne, and J. A. Wheeler, Gravitation (Freeman, San Francisco, 1973).

    Google Scholar 

  11. 11. J. B. Pitts and W. C. Schieve, Found. Phys. 34, 211 (2004).

    Article  Google Scholar 

  12. 12. L. P. Grishchuk, Usp. Fiz. Nauk 160, 147 (1990); Sov. Phys. Usp. 33, 669 (1990).

    Google Scholar 

  13. 13. A. N. Petrov, Vestnik Moskov. Univer. Ser. 3. Fiz. Astron. 31 (5), 88 (1990).

    Google Scholar 

  14. 14. A. N. Petrov, Astronom. Astrophys. Trans. 1, 195 (1992).

    Google Scholar 

  15. 15. A. A. Vlasov, Soviet J. Nucl. Phys. 51, 1148 (1990).

    Google Scholar 

  16. 16. Y. M. Loskutov, Soviet J. Nucl. Phys. 54, 903 (1991).

    MathSciNet  Google Scholar 

  17. 17. T. Damour, P. Jaranowski, and G. Schäfer, Phys. Lett. B 513, 147 (2001).

    Article  Google Scholar 

  18. 18. L. Blanchet, T. Damour, and G. Esposito-Farése, Phys. Rev. D 69, 124007 (2004).

    Article  Google Scholar 

  19. 19. G. Schaefer, “Binary black holes and gravitational wave production: Post-Newtonian analytic treatment,” in Current Trends in Relativistic Astrophysics, L. Fernendez-Jambrina, and L. M. Gonzolez-Romero, eds. (Lecture Notes in Physics, Vol. 617) (Springer, New York, 2003), p. 195.

    Google Scholar 

  20. 20. J. Hartle, K. S. Thorne, and R. H. Price, Chap. V in: Black Holes: The Membrane Paradigm, K. S. Thorne, R. H. Price, and D. A. Macdonald, eds. (Yale University Press, New Haven, 1986).

    Google Scholar 

  21. 21. A. J. S. Hamilton and J. P. Lisle, “The river model of black holes,” arXiv:gr-qc/0411060.

  22. 22. I. M. Gelfand and G. E. Shilov, Generalized functions. Vol. 1. Properties and Operations (Academic, New York, 1964).

    Google Scholar 

  23. 23. S. M. Kopeikin, Astronom. Zh. 62, 889 (1985); Soviet Astron. 29, 516 (1985).

    Google Scholar 

  24. 24. G. A. Korn and T. A. Korn, Mathematical Handbook for Scientists and Engineers (McGraw-Hill, New York, 1968).

    Google Scholar 

  25. 25. A. N. Petrov, Int. J. Mod. Phys. D 4, 451 (1995).

    Article  Google Scholar 

  26. 26. R. Penrose, Proc. R. Soc. Lond. A 381, 53 (1982).

    Google Scholar 

  27. 27. K. T. Tod, Proc. R. Soc. Lond. A 388, 457 (1983).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Petrov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Petrov, A. The Schwarzschild Black Hole as a Point Particle. Found Phys Lett 18, 477–489 (2005). https://doi.org/10.1007/s10702-005-7538-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10702-005-7538-2

Key words:

Navigation