Skip to main content
Log in

Casimir Effect for Tachyonic Fields

  • Published:
Foundations of Physics Letters

Abstract

In this paper we examine the Casimir effect for the case of a tachyonic field corresponding to particles with negative four-momentum squared, i.e., m2 < 0. We consider here only the case of the one dimensional, scalar field. In order to describe tachyonic field, we use the absolute synchronization scheme preserving Lorentz invariance. The renormalized vacuum energy is calculated by means of the Abel-Plana formula. Finally, the Casimir energy and Casimir force as the functions of distance are obtained. In order to compare the resulting formula with the standard one, we calculate the Casimir energy and Casimir force for massive, scalar field (m2 > 0).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. 1. A. Chodos, A. I. Hauser, and V. A. Kostecky, Phys. Rev. B 150, 431 (1985).

    Google Scholar 

  2. 2. J. Ciborowski and J. Rembieliński, Eur. Phys. J. C. 8, 157–161 (1999).

    Article  Google Scholar 

  3. 3. J. Rembieliński, “Tachyons and preferred frame,” Int. J. Mod. Phys. 12, 1677 (1997).

    Article  Google Scholar 

  4. 4. P. Caban and J. Rembieliński, “Lorentz-covariant quantum mechanics and preferred frame,” Phys. Rev. A 59, 6 (1999).

    Article  Google Scholar 

  5. 5. E. C. G. Sudarshan, Tachyons And The Search For A Preferred Frame (North Holland, 1978).

    Google Scholar 

  6. 6. J. Rembieliński and K. A. Smoliński, “Einstein-Podolsky-Rosen correlations of spin measurements in two moving inertial frames,” Phys. Rev. A 66 (2002).

    Google Scholar 

  7. 7. J. Rembieliński, K. A. Smoliński, and G. Duniec, “Thermodynamics and preferred frame,” Found. Phys. Lett. 14, 487–500 (2001).

    Article  MathSciNet  Google Scholar 

  8. 8. M. Bordag, U. Mohideen, and V. M. Mostepanenko, “New developments in the Casimir effect,” Phys. Rep. 353, 1–205 (2001).

    Article  Google Scholar 

  9. 9. G. Plunien, B. Muller, and W. Greiner, “Casimir effect,” Phys. Rep. 134, 87–193 (1996).

    Article  Google Scholar 

  10. A. A. Saharian, “The generalized Abel-Plana formula. Applications to Bessel functions and Casimir effect,” e-print hep-th/0002239 (2000).

  11. 11. A. A. Grib, S. G. Mamayev, and V. M. Mostepanenko, Vacuum Quantum Effects in Strong Fields (Friedmann Laboratory Publishing, St. Petersburg, 1994).

    Google Scholar 

  12. 12. V. M. Mostepanenko and N. N. Trunov, The Casimir Effect and its Applications (Clarendon Press, Oxford, 1997).

    Google Scholar 

  13. 13. H. B. G. Casimir, Proc. Kon. Nederl. Akad. Wet. 51, 793 (1948).

    Google Scholar 

  14. 14. H. B. G. Casimir, D. Polder, Phys. Rev. 73, 360 (1948).

    Article  Google Scholar 

  15. 15. M. Planck, Verth. Deutsch. Phys. Ges. 2, 138 (1911).

    Google Scholar 

  16. 16. N. N. Boggoliubov and D. V. Shirkov, Quantum Fields (Benjamin/Cummings, London, 1982).

    Google Scholar 

  17. 17. P. W. Milonni, The Quantum Vacuum: An Introduction to Quantum Electrodynamics (Academic, New York, 1994).

    Google Scholar 

  18. 18. V. B. Berestetskii, E. M. Lifshitz and L. P. Pitaevskii, Quantum Electrodynamics (Pergamon, Oxford, 1982).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcin Ostrowski.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ostrowski, M. Casimir Effect for Tachyonic Fields. Found Phys Lett 18, 227–242 (2005). https://doi.org/10.1007/s10702-005-6114-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10702-005-6114-0

Key words:

Navigation