Skip to main content
Log in

Quantum and Relativistic Corrections to Maxwell–Boltzmann Ideal Gas Model from a Quantum Phase Space Approach

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

The quantum corrections related to the ideal gas model often considered are those associated to the bosonic or fermionic nature of particles. However, in this work, other kinds of corrections related to the quantum nature of phase space are highlighted. These corrections are introduced as improvements in the expression of the partition function of an ideal gas. Then corrected thermodynamics properties of the ideal gas are deduced. Both the non-relativistic quantum and relativistic quantum cases are considered. It is shown that the corrections in the non-relativistic quantum case may be particularly useful to describe the deviation from the Maxwell–Boltzmann model at low temperature and/or in confined space. These corrections can be considered as including the description of quantum size and shape effects. For the relativistic quantum case, the corrections could be relevant for confined space and when the thermal energy of each particle is comparable to their rest energy. The corrections appear mainly as modifications in the thermodynamic equation of state and in the expressions of the partition function and thermodynamic functions like entropy, internal energy and free energy. Expressions corresponding to the Maxwell–Boltzmann model are shown to be asymptotic limits of the corrected expressions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wigner, E.P.: On the quantum correction for thermodynamic equilibrium. Phys. Rev. 40, 749–759 (1932)

    Article  ADS  MATH  Google Scholar 

  2. Hardi, R.J., Binek, C.: Thermodynamics and Statistical Mechanics. Wiley, New York (2014)

    Book  MATH  Google Scholar 

  3. Reif, F.: Fundamental of Statistical and Thermal Physics. Waveland Press, Long Grove (2009)

    Google Scholar 

  4. Guénault, T.: Statistical Physics. Springer, Dordrecht (1995)

    Book  MATH  Google Scholar 

  5. Attard, P.: Quantum Statistical Mechanics. IOP Publishing, Bristol (2015)

    Book  MATH  Google Scholar 

  6. Kosloff, R.: Quantum thermodynamic: a dynamical viewpoint. Entropy 15, 2100–2128 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Andriambololona, R.: “Mécanique quantique”, Collection LIRA, INSTN-Madagascar (1990)

  8. Planck, M.: Zur Dynamik bewegter systeme. Annalen der physic 331(6), 1–34 (1908)

    Article  ADS  MATH  Google Scholar 

  9. Jüttner, F.: Das MaxwellscheGesetz der Geschwindigkeitsverteilung in der Relativtheorie". Ann. Phys. 339(5), 856–882 (1911)

    Article  MATH  Google Scholar 

  10. Ott, H.: Lorentz-transformation der Warme und der Temperatur. Z. Angew. Phys. 175, 70–104 (1963)

    MATH  Google Scholar 

  11. Rovelli, C.: General relativistic statistical mechanics. Phys. Rev. D 87, 0845055 (2013)

    Article  Google Scholar 

  12. Becattini, F.: Covariant statistical mechanics and the stress-energy tensor. Phys. Rev. Lett. 108, 244502 (2012)

    Article  ADS  Google Scholar 

  13. Vinjanampathy, S., Anders, J.: Quantum thermodynamics. Contemp. Phys. 57(4), 545–579 (2016)

    Article  ADS  Google Scholar 

  14. Deffner, S., Campbell, S.: Quantum Thermodynamics. Morgan & Claypool Publishers, San Rafael (2019)

    Book  MATH  Google Scholar 

  15. Mahler, G.: Quantum Thermodynamic Processes. CRC Press, Taylor & Francis Group, Boca Raton (2015)

    MATH  Google Scholar 

  16. Aydin, A., Sisman, A.: Dimensional transitions in thermodynamic properties of ideal Maxwell-Boltzmann gases. Phys. Scr. 90, 045208 (2015)

    Article  ADS  Google Scholar 

  17. Ozturk, Z.F., Sisman, A.: Quantum size effects on the thermal and potential conductivities of ideal gases. Phys. Scr. 80(6), 654–662 (2009)

    Article  MATH  Google Scholar 

  18. Aydin, A., Sisman, A.: Quantum shape effects and novel thermodynamic behaviors at nanoscale. Phys. Lett. A 383(7), 655–665 (2019)

    Article  ADS  Google Scholar 

  19. Sisman, A.: Surface dependency in the thermodynamics of ideal gases. J. Phys. A: Math. Gen. 37(43), 11353–11361 (2004)

    Article  ADS  MATH  Google Scholar 

  20. Aydin, A., Sisman, A.: Quantum oscillations in confined and degenerate Fermi gases. I. Half-vicinity model. Phys. Lett. A 382(27), 1807–1812 (2018)

    Article  MATH  Google Scholar 

  21. Pang, H.: The pressure exerted by a confined ideal gas. J. Phys. A: Math. Theor. 44, 365001 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  22. Huang, K.: Statistical Mechanics. Wiley, New York (1963)

    Google Scholar 

  23. Andriambololona, R., Ranaivoson, R.T., Hanitriarivo, R., Randriamisy, D.E.: Dispersion operator algebra and linear canonical transformation. Int. J. Theor. Phys. 56(4), 1258–1273. Springer (2017). arXiv:1608.02268 [quant-ph]

  24. Ranaivoson, R.T., Andriambololona, R., Hanitriarivo, R., Raboanar, R.: Linear Canonical Transformations in relativistic quantum physics. Phys. Scr. 96(6), 065204 (2021)

    Article  ADS  Google Scholar 

  25. Ranaivoson, R.T., Andriambololona, R., Hanitriarivo, R., Ravelonjato, R.H.M.: Invariant quadratic operators associated with Linear Canonical Transformations and their eigenstates. J. Phys. Commun. 6, 095010 (2022)

    Article  Google Scholar 

  26. Ranaivoson, R.T., Hejesoa, V.S., Andriambololona, R., Rasolofoson, N.G., Rakotoson, H., Rabesahala, J., Rarivomanantsoa, L., Rabesiranana, N.: Highlighting relations between wave-particle duality, uncertainty principle, phase space and microstates. arXiv:2205.08538 [quant-ph] (2022)

  27. Quarati, P., Lissia, M.: The phase space elementary cell in classical and generalized statistics. Entropy 15(10), 4319–4433 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. Shah, P.: A multiobjective thermodynamic optimization of a nanoscalestrirling engine operated with Maxwell-Boltzmann gas. Heat Transf. Asian Res. 1–20 (2019)

  29. Wolf, E.L.: Nanophysics and nanotechnology: an introduction to modern concepts in nanoscience. WILEY-VCH Verlag GmbH & Co. KGaAWeinheim (2006)

  30. Kjelstrup, S., et al.: Bridging scales with thermodynamics: from nano to macro. Adv. Nat. Sci.: Nanosci. Nanotechnol. 5, 0230022014 (2014)

    Google Scholar 

  31. Andriambololona, R.: Algèbre Linéaire et Multilinéaire et Applications, 3 Tome, Collection LIRA, INSTN-Madagascar (1985)

  32. Curtright, T.L., Zachos, C.K.: Quantum mechanics in phase space. arXiv:1104.5269v2 [physics.hist-ph]. Asia Pac. Phys. Newslett. V1(1), pp 37–46 (2012)

  33. Rundle, R.P., Everit, M.J.: Overview of the phase space formulation of quantum mechanics with application to quantum technologies. Adv. Quantum Technol. 4(6), 2100016 (2021)

    Article  Google Scholar 

  34. Weyl, H.: Quantenmechanik und Gruppentheorie. ZeitschriftfürPhysik (in German) 46(1–2), 1–46 (1927)

    ADS  MATH  Google Scholar 

  35. Groenewold, H.J.: On the Principles of elementary quantum mechanics. Physica 12 (1946)

  36. Moyal, J.E.: Quantum mechanics as a statistical theory. Proc. Camb. Philos. Soc. 45, 99–124 (1949)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  37. Chacon-Acosta, G., Dagdug, L.: Manifestly covariant Jüttner distribution and equipartition theorem. Phys. Rev. E 81, 021126 (2010)

    Article  ADS  Google Scholar 

  38. Zaninetti, L.: New Probability Distributions in Astrophysics: IV. The Relativistic Maxwell-Boltzmann Distribution. Int. J. Astron. Astrophys. 10, 302–313 (2020)

    Article  Google Scholar 

  39. Farías, C., Pinto, V.A., Moya, P.S.: What is the temperature of a moving body? Sci. Rep. 7, 17657 (2017)

    Article  ADS  Google Scholar 

  40. Landsberg, P.T.: Does a moving body appear cool? Nature 214, 903–904 (1967)

    Article  ADS  Google Scholar 

  41. Landsberg, P.T.: Laying the ghost of relativistic temperature transformation. Phys. Lett. A 223, 401–403 (1996)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  42. Landsberg, P.T.: the impossibility of a universal relativistic temperature transformation. Physica A 340, 92–94 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  43. Sewell, G.L.: On the question of temperature transformations under Lorentz and Galilei boosts. J. Phys. A: Math. Theor. 41, 382003 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  44. Papadatos, N.: Relativistic quantum thermodynamics of moving systems. Phys. Rev. D 102, 085005 (2020)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. The main calculations were performed by RHMR and RTR. RHMR, RTR and RA write together the first draft of the manuscript. The other authors commented and made corrections on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Rivo Herivola Manjakamanana Ravelonjato.

Ethics declarations

Competing interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ravelonjato, R.H.M., Ranaivoson, R.T., Andriambololona, R. et al. Quantum and Relativistic Corrections to Maxwell–Boltzmann Ideal Gas Model from a Quantum Phase Space Approach. Found Phys 53, 88 (2023). https://doi.org/10.1007/s10701-023-00727-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10701-023-00727-5

Keywords

Navigation