Skip to main content
Log in

Completely Discretized, Finite Quantum Mechanics

  • Research
  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

I propose a version of quantum mechanics featuring a discrete and finite number of states that is plausibly a model of the real world. The model is based on standard unitary quantum theory of a closed system with a finite-dimensional Hilbert space. Given certain simple conditions on the spectrum of the Hamiltonian, Schrödinger evolution is periodic, and it is straightforward to replace continuous time with a discrete version, with the result that the system only visits a discrete and finite set of state vectors. The biggest challenges to the viability of such a model come from cosmological considerations. The theory may have implications for questions of mathematical realism and finitism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. Discussions of fundamental theories often revolve around approaches to unification and quantum gravity, such as superstring theory. But for the most part all of these approaches live within the standard framework of quantum mechanics; they are specific models under that broad umbrella, rather than alternatives to it.

References

  1. Easwaran, K., Hájek, A., Mancosu, P., Oppy, G.: Infinity. In: Zalta, E.N. (ed.) The Stanford Encyclopedia of Philosophy. Metaphysics Research Lab, Stanford University, Winter (2021)

    Google Scholar 

  2. Wolfram, S.: A class of models with the potential to represent fundamental physics. Complex Syst. 29(2), 107–536 (2020). arXiv:2004.08210 [cs.DM]

    Article  Google Scholar 

  3. Maldacena, J.M.: The Large N limit of superconformal field theories and supergravity. Int. J. Theor. Phys. 38, 1113–1133 (1999). arXiv:9711200 [hep-th]

    Article  MathSciNet  MATH  Google Scholar 

  4. Surya, S.: The causal set approach to quantum gravity. Living Rev. Relativ. 1, 22 (2019)

    MATH  Google Scholar 

  5. Buniy, R., Hsu, S., Zee, A.: Is Hilbert space discrete? Phys. Lett. B630, 68–72 (2005). arXiv:0508039 [hep-th]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Palmer, T.N.: Discretised hilbert space and superdeterminism. arXiv:2204.05763 [quant-ph]

  7. Bao, N., Carroll, S.M., Singh, A.: The Hilbert space of quantum gravity is locally finite-dimensional. Int. J. Mod. Phys. D 26(12), 1743013 (2017). arXiv:1704.00066

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Carroll, S.M., Singh, A.: Mad-dog Everettianism: quantum mechanics at its most minimal. In: Aguirre, A., Foster, B., Merali, Z. (eds.) What is Fundamental?, pp. 95–104. Springer, New York (2019) . arXiv:1801.08132 [quant-ph]

    Chapter  Google Scholar 

  9. Carroll, S.M.: Reality as a vector in Hilbert space. arXiv:2103.09780 [quant-ph]

  10. Wallace, D.: The Emergent Multiverse: Quantum Theory According to the Everett Interpretation. Oxford University Press, Oxford (2012)

    Book  MATH  Google Scholar 

  11. Albert, D.: Elementary quantum metaphysics. In: Cushing, J.T., Fine, A., Goldstein, S. (eds.) Bohmian Mechanics and Quantum theory: An Appraisal, pp. 277–284. Kluwer Academic Publishers, Norwell (1996)

    Chapter  Google Scholar 

  12. Carroll, S.M., Singh, A.: Quantum mereology: factorizing Hilbert space into subsystems with quasiclassical dynamics. Phys. Rev. A 103(2), 022213 (2021). arXiv:2005.12938 [quant-ph]

    Article  ADS  MathSciNet  Google Scholar 

  13. Cotler, J.S., Penington, G.R., Ranard, D.H.: Locality from the spectrum. Commun. Math. Phys. 368(3), 1267–1296 (2019). arXiv:1702.06142 [quant-ph]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Cao, C., Carroll, S.M., Michalakis, S.: Space from Hilbert space: recovering geometry from bulk entanglement. Phys. Rev. D 95(2), 024031 (2017). arXiv:1606.08444 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  15. Cao, C., Carroll, S.M.: Bulk entanglement gravity without a boundary: towards finding Einstein’s equation in Hilbert space. Phys. Rev. D 97(8), 086003 (2018). arXiv:1712.02803 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  16. Levin, M.A., Wen, X.-G.: String net condensation: a physical mechanism for topological phases. Phys. Rev. B 71, 045110 (2005). arXiv:0404617 [cond-mat]

    Article  ADS  Google Scholar 

  17. Carroll, S.M., Chatwin-Davies, A.: Cosmic equilibration: a holographic no-hair theorem from the generalized second law. arXiv:1703.09241 [hep-th]

  18. Banks, T.: Cosmological breaking of supersymmetry? Int. J. Mod. Phys. A 16, 910–921 (2001). arXiv:0007146 [hep-th]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Nomura, Y.: Physical theories, eternal inflation, and quantum universe. JHEP 11, 063 (2011). arXiv:1104.2324 [hep-th]

    Article  ADS  MATH  Google Scholar 

  20. Bousso, R., Susskind, L.: The multiverse interpretation of quantum mechanics. Phys. Rev. D 85, 045007 (2012). arXiv:1105.3796 [hep-th]

    Article  ADS  Google Scholar 

  21. Bao, N., Cao, C., Carroll, S.M., McAllister, L.: Quantum circuit cosmology: the expansion of the universe since the first qubit. arXiv:1702.06959 [hep-th]

  22. Dyson, L., Kleban, M., Susskind, L.: Disturbing implications of a cosmological constant. JHEP 10, 011 (2002). arXiv:0208013 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  23. Albrecht, A., Sorbo, L.: Can the universe afford inflation? Phys. Rev. D 70(6), 063528 (2004)

    Article  ADS  Google Scholar 

  24. Carroll, S.M.: What if time really exists?. arXiv:0811.3772 [gr-qc]

  25. Carroll, S.M.: Why Boltzmann brains are bad. In: Dasgupta, S., Dotan, R., Weslake, B. (eds.) Current Controversies in Philosophy of Science, pp. 7–20. Routledge, Milton Park (2017)

    Google Scholar 

  26. Boddy, K.K., Carroll, S.M., Pollack, J.: De sitter space without dynamical quantum fluctuations. Found. Phys. 46(6), 702–735 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. Lloyd, S.: Decoherent histories approach to the cosmological measure problem. arXiv:1608.05672 [quant-ph]

  28. Page, D.N., Wootters, W.K.: Evolution without evolution: dynamics described by stationary observables. Phys. Rev. D 27, 2885 (1983)

    Article  ADS  Google Scholar 

  29. Banks, T.: T C P, quantum gravity, the cosmological constant and all that. Nucl. Phys. B 249, 332–360 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  30. Albrecht, A., Iglesias, A.: The clock ambiguity and the emergence of physical laws. Phys. Rev. D 77, 063506 (2008). arXiv:0708.2743 [hep-th]

    Article  ADS  Google Scholar 

  31. Rovelli, C.: Forget time. Found. Phys. 41, 1475–1490 (2011). arXiv:0903.3832 [gr-qc]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. Giovannetti, V., Lloyd, S., Maccone, L.: Quantum time. Phys. Rev. D 92(4), 045033 (2015). arXiv:1504.04215 [quant-ph]

    Article  ADS  MathSciNet  Google Scholar 

  33. Marletto, C., Vedral, V.: Evolution without evolution and without ambiguities. Phys. Rev. D 95(4), 043510 (2017). arXiv:1610.04773 [quant-ph]

    Article  ADS  Google Scholar 

  34. Singh, A.: Quantum space, quantum time, and relativistic quantum mechanics. Quant. Stud. Math. Found. 9(1), 35–53 (2022). arXiv:2004.09139 [quant-ph]

    Article  MathSciNet  Google Scholar 

  35. Putnam, H.: What is mathematical truth? Hist. Math. 2(4), 529–533 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  36. Carroll, S.M.: Reality realism. https://philarchive.org/rec/CARRRK

  37. Presburger, M.: Uber die vollstandigkeiteines gewissen systems der arithmetik ganzer zahlen, in welchen die addition als einzige operation hervortritt. In: Comptes-Rendus du ler Congres des Mathematiciens des Pays Slavs. (1929)

  38. Haase, C.: A survival guide to Presburger arithmetic. ACM SIGLOG News 5(3), 67–82 (2018). https://doi.org/10.1145/3242953.3242964

    Article  Google Scholar 

  39. Ye, F.: Strict Finitism and the Logic of Mathematical Applications, vol. 355. Springer, New York (2011)

    Book  MATH  Google Scholar 

Download references

Acknowledgements

It is a pleasure to thank Justin Clarke-Doane for helpful comments.

Author information

Authors and Affiliations

Authors

Contributions

All contributions were made by the single author

Corresponding author

Correspondence to Sean M. Carroll.

Ethics declarations

Competing interest

The authors declare no competing interests

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carroll, S.M. Completely Discretized, Finite Quantum Mechanics. Found Phys 53, 90 (2023). https://doi.org/10.1007/s10701-023-00726-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10701-023-00726-6

Keywords

Navigation