Skip to main content
Log in

Synchronization and Fundamental Time: A Connection Between Relativity and Quantum Mechanics

  • Brief Report
  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

An interesting connection between special relativity and quantum mechanics was put forward by Louis de Broglie, about 60 years ago, who focused on the link between synchronization in a rotating frame and the quantization of the angular momentum. Here we generalise his approach to curved spacetime, using the gravitoelectromagnetic analogy, which can be applied to describe the weak gravitational field around rotating sources, and give a new interpretation of the results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. We use the following notation: Greek (running from 0 to 3) and Latin (running from 1 to 3) indices denote spacetime and spatial components, respectively; letters in boldface like \(\textbf{x}\) indicate spatial vectors.

  2. Up to linear order in the gravitoelectromagnetic potentials.

References

  1. Aad, G., et al., (ATLAS): Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC. Phys. Lett. B 716, 1–29 (2012). https://doi.org/10.1016/j.physletb.2012.08.020. http://arxiv.org/abs/1207.7214 [hep-ex]

    Article  ADS  Google Scholar 

  2. Will, C.M.: The confrontation between general relativity and experiment. Living Rev. Rel. 17, 4 (2014). https://doi.org/10.12942/lrr-2014-4. http://arxiv.org/abs/1403.7377 [gr-qc]

    Article  MATH  Google Scholar 

  3. Stachel, J.: Einstein and the quantum: fifty years of struggle, pp. 349–81. University of Pittsburgh Press, Pittsburgh (1986)

    Google Scholar 

  4. Henson, J.: The causal set approach to quantum gravity (2008). http://arxiv.org/abs/0601121 [gr-qc]

  5. Rovelli, C.: Loop quantum gravity. Living Rev. Relativ. 11, 1–69 (2008)

    Article  ADS  MATH  Google Scholar 

  6. Bombelli, L., Lee, J., Meyer, D., Sorkin, R.D.: Space-time as a causal set. Phys. Rev. Lett. 59, 521 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  7. Lee, T.-D.: Can time be a discrete dynamical variable? Phys. Lett. B 122, 217–220 (1983)

    Article  ADS  Google Scholar 

  8. Ambarzumian, V., Iwanenko, D.: Zur Frage nach Vermeidung der unendlichen Selbstrückwirkung des Elektrons. Zeitschrift fur Physik 64, 563–567 (1930). https://doi.org/10.1007/BF01397206

    Article  ADS  MATH  Google Scholar 

  9. Snyder, H.S.: Quantized space-time. Phys. Rev. 71, 38–41 (1947). https://doi.org/10.1103/PhysRev.71.38

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Snyder, H.S.: The electromagnetic field in quantized space-time. Phys. Rev. 72, 68–71 (1947). https://doi.org/10.1103/PhysRev.72.68

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Farias, R.A.H., Recami, E.: Introduction of a quantum of time ("chronon"), and its consequences for quantum mechanics (1997). http://arxiv.org/abs/9706059 [quant-ph]

  12. De Broglie, L.: Deux remarques en relation avec le problème du disque tournant en théorie de la relativité. Comptes Rendus de l’académie des sciences 249, 1426–1428 (1959)

    Google Scholar 

  13. Rizzi, G., Serafini, A.: Synchronization and desynchronization on rotating platforms. In: Relativity in rotating frames, pp. 79–102. Springer, Dordrecht (2004)

    Chapter  MATH  Google Scholar 

  14. Bock, R.D.: Radial quantization in rotating space-times. Found. Phys. 37, 977–988 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Ruggiero, M.L., Tartaglia, A.: Gravitomagnetic effects. Nuovo Cim. B 117, 743–768 (2002). http://arxiv.org/abs/0207065 [gr-qc]

    ADS  Google Scholar 

  16. Mashhoon, B.: Gravitoelectromagnetism: a brief review. In: Iorio, L. (ed.) The measurement of gravitomagnetism: a challenging enterprise. NOVA publishers, Hauppauge (2007). http://arxiv.org/abs/0311030 [gr-qc]

    Google Scholar 

  17. Ruggiero, M.L., Astesiano, D.: A tale of analogies: gravitomagnetic effects, rotating sources, observers and all that (2023). http://arxiv.org/abs/2304.02167 [gr-qc]

  18. Rizzi, G., Ruggiero, M.L.: The relativistic Sagnac effect: two derivations. In: Relativity in rotating frames, pp. 179–220. Springer, Dordrecht (2004)

    Chapter  MATH  Google Scholar 

  19. Ruggiero, M.L., Tartaglia, A.: A note on the Sagnac effect and current terrestrial experiments. Eur. Phys. J. Plus 129, 1–5 (2014)

    Article  Google Scholar 

  20. Ruggiero, M.L., Tartaglia, A.: A note on the Sagnac effect for matter beams. Eur. Phys. J. Plus 130, 1–5 (2015)

    Article  Google Scholar 

  21. Landau, L.D., Lifshitz, E.M.: The classical theory of fields, vol. 2. Elsevier, Amsterdam (2013)

    MATH  Google Scholar 

  22. Ashby, N.: Relativity in the global positioning system. Living Rev. Relativ. 6, 1–42 (2003). https://doi.org/10.12942/lrr-2003-1

    Article  ADS  MATH  Google Scholar 

  23. Bergia, S., Guidone, M.: Time on a rotating platform and the one-way speed of light. Found. Phys. Lett. 11, 549–559 (1998)

    Article  MathSciNet  Google Scholar 

  24. Ruggiero, M.L.: A note on the gravitoelectromagnetic analogy. Universe 7, 451 (2021). https://doi.org/10.3390/universe7110451. http://arxiv.org/abs/2111.09008 [gr-qc]

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The author acknowledges the contribution of the local research project Modelli gravitazionali per lo studio dell’universo (2022)—Dipartimento di Matematica “G.Peano”, Università degli Studi di Torino; this work is done within the activity of the Gruppo Nazionale per la Fisica Matematica (GNFM). The author thanks Dr. Antonello Ortolan for useful discussion.

Author information

Authors and Affiliations

Authors

Contributions

All contributions are mine.

Corresponding author

Correspondence to Matteo Luca Ruggiero.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ruggiero, M.L. Synchronization and Fundamental Time: A Connection Between Relativity and Quantum Mechanics. Found Phys 53, 83 (2023). https://doi.org/10.1007/s10701-023-00724-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10701-023-00724-8

Keywords

Navigation