Skip to main content
Log in

New Insights on the Quantum-Classical Division in Light of Collapse Models

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

We argue, in light of Collapse Model interpretation of quantum theory, that the fundamental division between the quantum and classical behaviors might be analogous to the division of thermodynamic phases. A specific relationship between the collapse parameter \((\lambda )\) and the collapse length scale (\(r_C\)) plays the role of the coexistence curve in usual thermodynamic phase diagrams. We further claim that our functional relationship between \(\lambda\) and \(r_C\) is strongly supported by the existing International Germanium Experiment (IGEX) collaboration data. This result is preceded by a brief discussion of quantum measurement theory and the Ghirardi–Rimini–Weber (GRW) model applied to the free wavepacket dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Pearle, P.: Reduction of the state vector by a nonlinear Schrödinger equation. Phys. Rev. D 13, 857 (1976)

    Article  ADS  MathSciNet  Google Scholar 

  2. Ghirardi, G.C., Rimini, A., Weber, T.: Unified dynamics for microscopic and macroscopic systems. Phys. Rev. D 34, 470 (1986)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Ghirardi, G.C., Pearle, P., Rimini, A.: Markov processes in Hilbert space and continuous spontaneous localization of systems of identical particles. Phys. Rev. A 42, 78 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  4. Bassi, A., Ghirardi, G.C.: Dynamical reduction models. Phys. Rept. 379, 257 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Adler, S.L., Bassi, A.: Is quantum theory exact? Science 325, 275 (2009)

    Article  Google Scholar 

  6. Bassi, A., Lochan, K., Satin, S., Singh, T.P., Ulbricht, H.: Models of wave-function collapse, underlying theories, and experimental tests. Rev. Mod. Phys. 85, 471–527 (2013)

    Article  ADS  Google Scholar 

  7. Benatti, F., Ghirardi, G.C., Rimini, A., Weber, T.: Quantum mechanics with spontaneous localization and the quantum theory of measurement. Nuovo Cimento B 100(1), 27–41 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  8. d’Espagnat, B.: Conceptual Foundations of Quantum Mechanics, 2nd edn. Addison-Wesley, Boston (1976)

    Google Scholar 

  9. Messiah, A.: Quantum Mechanic, pp. 216–222. North-Holland Publishing, Amsterdam (1961)

    Google Scholar 

  10. van Wezel, J.: Phase transitions as a manifestation of spontaneous unitarity violation. J. Phys. A 55(40), 401001 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  11. van Wezel, Jasper: Observing the spontaneous breakdown of unitarity. J. Phys: Conf. Ser. 150, 042225 (2009)

    Google Scholar 

  12. van Wezel, Jasper: Quantum dynamics in the thermodynamic limit. Phys. Rev. B 78, 054301 (2008)

    Article  ADS  Google Scholar 

  13. Mertens, Lotte, Wesseling, Matthijs, van Wezel, Jasper: An objective collapse model without state dependent stochasticity. SciPost Phys. 14, 114 (2023)

    Article  ADS  MathSciNet  Google Scholar 

  14. Vinante, A., Carlesso, M., Bassi, A., el al.: Narrowing the parameter space of collapse models with ultracold layered force sensors. Phys. Rev. Lett. 125, 100404 (2020)

    Article  ADS  Google Scholar 

  15. Armano, M., et al.: Beyond the required LISA free-fall performance: new LISA pathfinder results down to 20 \(\mu\)Hz. Phys. Rev. Lett. 120, 061101 (2018)

    Article  ADS  Google Scholar 

  16. Carlesso, M., Paternostro, M., Ulbricht, H., Vinante, A., Bassi, A.: Non-interferometric test of the continuous spontaneous localization model based on rotational optomechanics. New J. Phys. 20, 083022 (2018)

    Article  ADS  Google Scholar 

  17. Vinante, A., Mezzena, R., Falferi, P., Carlesso, M., Bassi, A.: Improved noninterferometric test of collapse models using ultracold cantilevers. Phys. Rev. Lett. 119, 110401 (2017)

    Article  ADS  Google Scholar 

  18. Laloe, F., Mullin, W.J., Pearle, P.: Heating of trapped ultracold atoms by collapse dynamics. Phys. Rev. A 90, 052119 (2014)

    Article  ADS  Google Scholar 

  19. Carlesso, Matteo, Bassi, Angelo, Falferi, Paolo, Vinante, Andrea: Experimental bounds on collapse models from gravitational wave detectors. Phys. Rev. D 94, 124036 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  20. Adler, S.L.: Lower and upper bounds on CSL parameters from latent image formation and IGM heating. J. Phys. A 40, 2935 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Miley, H.S., Avignone, F.T., III., Brodzinski, R.L., Collar, J.I., Reeves, J.H.: Suggestive evidence for the two-neutrino double-beta decay of Ge-76. Phys. Rev. Lett. 65, 3092 (1990)

    Article  ADS  Google Scholar 

  22. Aalseth, C.E., et al.: Neutrinoless double-\(\beta\) decay of \(^{76}\)Ge: first results from the international germanium experiment (igex) with six isotopically enriched detectors. Phys. Rev. C 59, 2108 (1999)

    Article  ADS  Google Scholar 

  23. Collett, B., Pearle, P., Avignone, F., Nussinov, S.: Constraint on collapse models by limit on spontaneous x-ray emission in Ge. Found. Phys. 25(10), 1399–1412 (1995)

    Article  ADS  Google Scholar 

  24. Piscicchia, K., et al.: CSL collapse model mapped with the spontaneous radiation. Entropy 19(7), 319 (2017)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Authors thank Paolo Amore and Saurya Das for their valuable feedback on the pre-print.

Funding

Research of FT and SKM are supported by SEP-CONACyT research grant CB/2017-18/A1S-33440, Mexico.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sujoy K. Modak.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Torres, F., Modak, S.K. & Aranda, A. New Insights on the Quantum-Classical Division in Light of Collapse Models. Found Phys 53, 73 (2023). https://doi.org/10.1007/s10701-023-00716-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10701-023-00716-8

Navigation