Skip to main content
Log in

Mathematical Models of Photons

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

Mathematics from the electromagnetic field quantization procedure and the soliton models of photons are used to construct a new 3D model of photons. Besides the interaction potential between the charged particle and the photons, which contains the annihilation and creation operators of photons, the new function for a description of free propagating photons is derived. This function presents the vector potential of the field, the function is a product of the harmonic oscillator eigenfunction with the well-defined coordinate of the oscillator and the Gaussian function of the polar radius in the transverse direction. In the article, the difference between the quantum mechanics of particles and photons is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availibility

Data sharing not applicable to this article as no datasets were generated or analysed during the current study. The authors declare they have no financial interests.

References

  1. Plank, M.: On an improvement of Wien’s equation for the spectrum. Verh. Dtsch. Phys. Ges. 2, 202 (1900)

    Google Scholar 

  2. Einstein, A.: Ann. Phys. 17, 132 (1905)

    Article  Google Scholar 

  3. Compton, A.H.: A quantum theory of the scattering of x-rays by light elements. Phys. Rev. 21, 483 (1923)

    Article  ADS  Google Scholar 

  4. Dirac, P.A.M.: The quantum theory of the emission and absorption of radiation. Proc. R. Soc. Lond. 114, 243 (1927)

    ADS  MATH  Google Scholar 

  5. Roychoundhuri, C., Kracklauer, A.F., Creath, K. (eds.): The Nature of Light: What is a Photon? CRC Press, Roca Raton (2008)

    Google Scholar 

  6. Roychoundhuri, C., Kracklauer, A.F., Raedt, H.D.: The nature of light: What is a photon? VI. Proc. SPIE 9570, 1 (2015)

    Google Scholar 

  7. Chrapkiewicz, R., Jachura, M., Banaszek, K., Wasilewski, W.: Hologram of a single photon. Nat. Photonics 10, 576 (2016)

    Article  ADS  Google Scholar 

  8. Molina-Terriza, G., Torres, J.P., Torner, L.: Twisted photons. Nat. Phys. 3, 305 (2007)

    Article  Google Scholar 

  9. Lundeen, J.S., Sutherland, B., Patel, A., Stewart, C., Bamber, C.: Direct measurement of the quantum wavefunction. Nature 474, 188 (2011)

    Article  Google Scholar 

  10. Keller, M., Lange, B., Hayasaka, K., Langa, W., Walther, H.: Continuous generation of single photons with controlled waveform in an ion-trap cavity system. Nature 431, 1075 (2004)

    Article  ADS  Google Scholar 

  11. Specht, H.P., Bochmann, J., Mucke, M., Weber, B., Figueroa, E., Moehring, D.L., Rempe, G.: Phase shaping of single-photon wave packets. Nat. Photonics 3, 469 (2009)

    Article  ADS  Google Scholar 

  12. Davis, A.O.C., Thiel, V., Karpiński, M., Smith, B.J.: Measuring the single-photon temporal-spectral wave function. Phys. Rev. Lett. 121, 083602 (2018)

    Article  ADS  Google Scholar 

  13. Meyer-Scott, E., Sillberhorn, C., Migdall, A.: Single-photon sources: approaching the ideal through multiplexing. Rev. Sci. Instrum. 91, 041101 (2020)

    Article  ADS  Google Scholar 

  14. Eisaman, M.D., Fan, A.M.J., Polyakov, S.V.: Invited review article: single-photon sources and detectors. Rev. Sci. Instrum. 82, 071101 (2011)

    Article  ADS  Google Scholar 

  15. Born, M., Wolf, E.: Principles of Optics. Cambridge University Press, Cambridge (1999)

    Book  MATH  Google Scholar 

  16. Aharonov, Y., Bohm, D.: Significance of electromagnetic potentials in the quantum theory. Phys. Rev. 115, 485 (1959)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Loudon, R.: The Quantum Theory of Light. Oxford University Press, New York (2000)

    MATH  Google Scholar 

  18. Davydov, A.S.: Quantum Mechanics. Pergamon Press, Oxford (1965)

    Google Scholar 

  19. Haken, H., Wolf, H.C.: The Physics of Atoms and Quanta. Springer, Berlin (2005)

    Book  MATH  Google Scholar 

  20. Bennett, R., Barlow, T.M., Beige, A.: A physically motivated quantization of the electromagnetic field. Eur. J. Phys. 37, 014001 (2016)

    Article  MATH  Google Scholar 

  21. Bateman, H., Erdelyi, A.: Higher Transcendental Functions. McGraw-Hill, New York (1953)

    MATH  Google Scholar 

  22. Scully, M.O., Zubairy, M.S.: Quantum Optics. Cambridge University Press, Cambridge (1997)

    Book  Google Scholar 

  23. Bersons, I.: Soliton model of the photon. Latv. J. Phys. Tech. Sci. 50, 60 (2013)

    Google Scholar 

  24. Bersons, I., Veilande, R., Pirktinsh, A.: Three-dimensional collinearly propagating solitons. Phys. Scr. 89, 045102 (2014)

    Article  ADS  Google Scholar 

  25. Bersons, I., Veilande, R., Balcers, O.: Soliton model of a photon propagating in dielectrics. Phys. Scr. 91, 065201 (2016)

    Article  ADS  Google Scholar 

  26. Newell, A.C.: Solitons in Mathematic and Physics. Society for Industrial and Applied Mathematics, Philadelphia (1985)

    Book  MATH  Google Scholar 

  27. Douxois, T., Peyrard, M.: Physics of Solitons. Cambridge University Press, Cambridge (1991)

    Google Scholar 

  28. Kivshar, Y.S., Agrawal, G.P.: Optice Solitons. Academic Press, San Diego (2003)

    Google Scholar 

  29. Calogero, F., Degasperis, A.: Exact solution via the spectral transform of a generalization with linearlyx-dependent coefficients of the nonlinear schrödinger equation. Lett. Nuovo Cimento 22, 420 (1978)

    Article  ADS  MathSciNet  Google Scholar 

  30. Bersons, I., Veilande, R., Balcers, O.: Model of compact 3d electromagnetic solitons. Phys. Scr. 95, 025203 (2020)

    Article  ADS  Google Scholar 

  31. Newton, T.D., Wigner, E.P.: Localized states for elementary systems. Rev. Mod. Phys. 21, 400 (1949)

    Article  ADS  MATH  Google Scholar 

  32. Bialynicki-Birula, I.: On the wave function of the photon. Acta Phys. Pol. A 86, 97 (1994)

    Article  ADS  Google Scholar 

  33. Sebens, C.T.: Electromagnetism as quantum physics. Found. Phys. 49, 365 (2019)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. Dobrski, M., Przanowski, M., Tosiek, J., Turrubiates, F.J.: Geometrical interpretation of the photon position operator with commuting components. Phys. Rev. A 104, 042206 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  35. Sipe, J.E.: Photon wave functions. Phys. Rev. A 52, 1875 (1995)

    Article  ADS  Google Scholar 

  36. Glauber, R.J.: Coherent and incoherent states of the radiation field. Phys. Rev. 131, 2766 (1963)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  37. Bersons, I., Veilande, R., Balcers, O.: Reflection and refraction of photons. Phys. Scr. 97, 035504 (2022)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

RV has been supported by ERDF project No. 1.1.1.1/18/A/155.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rita Veilande.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bersons, I., Veilande, R. & Balcers, O. Mathematical Models of Photons. Found Phys 53, 78 (2023). https://doi.org/10.1007/s10701-023-00708-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10701-023-00708-8

Keywords

Navigation