Skip to main content
Log in

Evolution via Projection

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

The conditional probability interpretation of quantum gravity has been criticized for violating the constraints of the theory and also not giving the correct expression for the propagator. We have shown that following Page’s proposal of constructing an appropriate projector for the stationary state of a closed system, we can arrive at the correct expression for the propagator by using conditional probability rule. Also, it is shown that a unitary evolution of states of a subsystem at local level may be a consequence of non-unitary projection of appropriate states at global level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ryder, L.H.: Quantum Field Theory. Cambridge University Press, Cambridge (1996)

    Book  MATH  Google Scholar 

  2. Kiefer, C.: Quantum Gravity. Oxford University Press, Oxford (2007)

    Book  MATH  Google Scholar 

  3. Rovelli, C.: Quantum Gravity. Cambridge University Press, Cambridge (2004)

    Book  MATH  Google Scholar 

  4. Thiemann, T.: Introduction to Modern Canonical Quantum General Relativity. Cambridge University Press, Cambridge (2007)

    Book  MATH  Google Scholar 

  5. Oriti, D.: Approaches to Quantum Gravity: Toward a New Understanding of Space, Time and Matter. Cambridge University Press, Cambridge (2009)

    Book  MATH  Google Scholar 

  6. Isham, C.J., Kakas, A.C.: A group theoretic approach to the canonical quantization of gravity. 1. Construction of the canonical group. Class. Quantum Gravity 1, 621–632 (1984)

    Article  ADS  MATH  Google Scholar 

  7. Isham, C.J., Kakas, A.C.: A group theoretical approach to the canonical quantization of gravity. 2. Unitary representations of the canonical group. Class. Quantum Gravity 1, 633–650 (1984)

    Article  ADS  MATH  Google Scholar 

  8. Ashtekar, A.: New variables for classical and quantum gravity. Phys. Rev. Lett. 57, 2244–2247 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  9. Misner, C.W.: Feynman’s quantization of general relativity. Rev. Mod. Phys. 57, 497–509 (1957)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Vilkovisky, G.A.: Effective action in quantum gravity. Class. Quantum Gravity 9, 895–903 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  11. Horowitz, G.T.: Spacetime in string theory. N. J. Phys. 7, 201 (2005)

    Article  MathSciNet  Google Scholar 

  12. Rovelli, C., Smolin, L.: Knot theory and quantum gravity. Phys. Rev. Lett. 61, 1155–1158 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  13. Rovelli, C., Smolin, L.: Loop space representation of quantum general relativity. Nucl. Phys. B 331, 80–152 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  14. Rovelli, C.: Time in quantum gravity: an hypothesis. Phys. Rev. D 43, 442–456 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  15. Rovelli, C.: Forget Time. Found. Phys. 41(9), 1475–1490 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Barbour, J.: The End of Time. Oxford University Press, New York (2001)

    Google Scholar 

  17. Barbour, J.: The timelessness of quantum gravity. I: the evidence from the classical theory. Class. Quantum Gravity 11, 2853–2873 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  18. Rovelli, C.: Quantum mechanics without time: a model. Phys. Rev. D 42, 2638–2646 (1990)

    Article  ADS  Google Scholar 

  19. Brown, J.D., Kuchař, K.V.: Dust as a standard of space and time in canonical quantum gravity. Phys. Rev. D 51, 5600–5629 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  20. Shestakova, T., Simeone, C.: The Problem of time and gauge invariance in the quantization of cosmological models. I. Canonical quantization methods. Gravit. Cosmol. 10, 161–176 (2004)

    ADS  MathSciNet  MATH  Google Scholar 

  21. Vilenkin, A.: Interpretation of the wave function of the Universe. Phys. Rev. D 39, 1116–1122 (1989)

    Article  ADS  Google Scholar 

  22. Parentani, R.: Interpretation of the solutions of the Wheeler–DeWitt equation. Phys. Rev. D 56, 4618–4624 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  23. Halliwell, J.J., Hawking, S.W.: Origin of structure in the Universe. Phys. Rev. D 31, 1777–1791 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  24. Kuchař, K.V.: Time and interpretations of quantum gravity. In: Kunstatter, G., Vincent, D.E., Williams, J.G. (eds) Proceedings of 4th Canadian Conference on General Relativity and Relativistic Astrophysics, 1992. World Scientific, Singapore (1992)

  25. Dirac, P.A.M.: Lectures on Quantum Mechanics. Yeshiva University, New York (1964)

    Google Scholar 

  26. DeWitt, B.S.: Quantum theory of gravity. I. The canonical theory. Phys. Rev. 160(5), 1113–1148 (1967)

    Article  ADS  MATH  Google Scholar 

  27. Page, D.N., Wootters, W.K.: Evolution without evolution: dynamics described by stationary observables. Phys. Rev. D 27(12), 2885–2892 (1983)

    Article  ADS  Google Scholar 

  28. Unruh, W.G., Wald, R.M.: Time and the interpretation of canonical quantum gravity. Phys. Rev. D 40(8), 2598–2614 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  29. Isham, C.J.: Canonical quantum gravity and the problem of time. In: Lectures presented at the NATO Advanced Study Institute “Recent Problems in Mathematical Physics”, Salamanca (1992)

  30. Marletto, C., Vedral, V.: Evolution without evolution and without ambiguities. Phys. Rev. D 95(4), 043510 (2017)

    Article  ADS  Google Scholar 

  31. Giovannetti, V., Lloyd, S., Maccone, L.: Quantum time. Phys. Rev. D 92, 045033 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  32. Page, D.: Clock time and entropy. In: Halliwell, J.J., Perez-Mercader, J., Żurek, W.H. (eds.) Physical Origins of Time Asymmetry. Cambridge University Press, Cambridge (1993)

    Google Scholar 

  33. Ballentine, L.E.: Quantum Mechanics—A Modern Development. World Scientific, Singapore (1998)

    Book  MATH  Google Scholar 

  34. Wald, R.: General Relativity. Chicago Press, Chicago (1984)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

As a sole author of this manuscript, I declare that this manuscript has not been published elsewhere and is not under active consideration for publication.

Corresponding author

Correspondence to Mahendra Joshi.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Joshi, M. Evolution via Projection. Found Phys 53, 67 (2023). https://doi.org/10.1007/s10701-023-00706-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10701-023-00706-w

Keywords

Navigation