Skip to main content
Log in

Physical Thinking and the GHZ Theorem

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

Quantum mechanics is one of the most successful theories of physics. But the creators of quantum mechanics had to reject realism in order to describe some paradoxical quantum phenomena. Einstein considered the rejection of realism unacceptable, since according to his understanding, realism is the presupposition of every kind of physical thinking. The dispute about the permissibility of rejecting realism has largely determined the modern understanding of quantum theory and even led to the emergence new quantum information technologies. Many modern authors are sure that realism can be refute experimentally. Some authors are sure even that real technologies can be created on the basis of this refutation. The well-known GHZ theorem is considered critically in this work the authors of which are sure that realism can be refute experimentally.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Einstein, A., Podolsky, B., Rosen, N.: Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47, 777–780 (1935)

    Article  ADS  MATH  Google Scholar 

  2. Bohr, N.: Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 48, 696–702 (1935)

    Article  ADS  MATH  Google Scholar 

  3. Bricmont, J., Goldstein, S., Hemmick, D.: From EPR-Schrodinger paradox to nonlocality based on perfect correlations. Found. Phys. 52, 53 (2022)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Dorato, M., Morganti, M.: What ontology for relational quantum mechanics? Found. Phys. 52, 66 (2022)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Harrison, A.K.: A realistic theory of quantum measurement. Found. Phys. 52, 22 (2022)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. ’t Hooft, G.: Fast vacuum fluctuations and the emergence of quantum mechanics. Found. Phys. 51, 63 (2021)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Plotnitsky, A.: The unavoidable interaction between the object and the measuring instruments: reality, probability, and nonlocality in quantum physics. Found. Phys. 50, 1824–1858 (2020)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Dieks, D.: Quantum reality, perspectivalism and covariance. Found. Phys. 49, 629–646 (2019)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Jaeger, G.: Quantum unsharpness, potentiality, and reality. Found. Phys. 49, 663–676 (2019)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Bouwmeester, D., Ekert, A., Zeilinger, A. (eds.): The Physics of Quantum Information. Springer-Verlag, Berlin Heidelberg (2000)

    MATH  Google Scholar 

  11. Greenstein, G., Zajonc, A.: The Quantum Challenge. Modern Research on the Foundations of Quantum Mechanics, 2nd edn. Jones and Bartlett, Sudbury (2006)

    Google Scholar 

  12. Jaeger, G.: Entanglement, Information, and the Interpretation of Quantum Mechanics. Springer, Berlin Heidelberg, Germany (2009)

    Book  Google Scholar 

  13. Hess, K.: Einstein Was Right! Stanford University, Pan, CA (2015)

    MATH  Google Scholar 

  14. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  15. Helland, I.S.: The bell experiment and the limitations of actors. Found. Phys. 52, 55 (2022)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Price, H., Wharton, K.: Entanglement swapping and action at a distance. Found. Phys. 51, 105 (2021)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Khrennikov, A.: Quantum postulate vs. quantum nonlocality: on the role of the Planck constant in Bell’s argument. Found. Phys. 51, 16 (2021)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Acuna, P.: Von Neumann’s theorem revisited. Found. Phys. 51, 73 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  19. Bell, J.S.: On the Einstein–Podolsky–Rosen paradox. Physics 1, 195–200 (1964)

    Article  MathSciNet  Google Scholar 

  20. Bell, J.S.: Speakable and Unspeakable in Quantum Mechanics. Collected Papers on Quantum Philosophy. Cambridge University Press, Cambridge (2004)

    Book  Google Scholar 

  21. Aspect, A., Grangier, P., Roger, G.: Experimental tests of realistic local theories via Bell’s theorem. Phys. Rev. Lett. 47, 460–463 (1981)

    Article  ADS  Google Scholar 

  22. Aspect, A., Grangier, P., Roger, G.: Experimental realization of Einstein–Podolsky–Rosen–Bohm Gedankenexperiment: a new violation of Bell’s inequalities. Phys. Rev. Lett. 49, 91–94 (1982)

    Article  ADS  Google Scholar 

  23. Aspect, A., Dalibard, J., Roger, G.: Experimental test of Bell’s inequalities using time - varying analyzers. Phys. Rev. Lett. 49, 1804–1807 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  24. Aspect, A.: Viewpoint: closing the door on Einstein and Bohr’s quantum debate. Physics 8, 123 (2015)

    Article  Google Scholar 

  25. Hensen, B., Bernien, H., Dreau, A.E., Reiserer, A., Kalb, N., Blok, M.S., Ruitenberg, J., Vermeulen, R.F.L., Schouten, R.N., Abellan, C., Amaya, W., Pruneri, V., Mitchell, M.W., Markham, M., Twitchen, D.J., Elkouss, D., Wehner, S., Taminiau, T.H., Hanson, R.: Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres. Nature 526, 682–686 (2015)

    Article  ADS  Google Scholar 

  26. Giustina, M., Versteegh, M.A.M., Wengerowsky, S., Handsteiner, J., Hochrainer, A., Phelan, K., Steinlechner, F., Kofler, J., Larsson, J.-A., Abellan, C., Amaya, W., Pruneri, V., Mitchell, M.W., Beyer, J., Gerrits, T., Lita, A.E., Shalm, L.K., Nam, S.W., Scheidl, T., Ursin, R., Wittmann, B., Zeilinger, A.: Significant-loophole-free test of Bell’s theorem with entangled photons. Phys. Rev. Lett. 115, 250401 (2015)

    Article  ADS  Google Scholar 

  27. Shalm, L.K., Meyer-Scott, E., Christensen, B.G., Bierhorst, P., Wayne, M.A., Stevens, M.J., Gerrits, T., Glancy, S., Hamel, D.R., Allman, M.S., Coakley, K.J., Dyer, S.D., Hodge, C., Lita, A.E., Verma, V.B., Lambrocco, C., Tortorici, E., Migdall, A.L., Zhang, Y., Kumor, D.R., Farr, W.H., Marsili, F., Shaw, M.D., Stern, J.A., Abellan, C., Amaya, W., Pruneri, V., Jennewein, T., Mitchell, M.W., Kwiat, P.G., Bienfang, J.C., Mirin, R.P., Knill, E., Nam, S.W.: Strong loophole-free test of local realism. Phys. Rev. Lett. 115, 250402 (2015)

    Article  ADS  Google Scholar 

  28. Handsteiner, J., Friedman, A.S., Rauch, D., Gallicchio, J., Liu, B., Hosp, H., Kofler, J., Bricher, D., Fink, M., Leung, C., Mark, A., Nguyen, H.T., Sanders, I., Steinlechner, F., Ursin, R., Wengerowsky, S., Guth, A.H., Kaiser, D.I., Scheidl, T., Zeilinger, A.: Cosmic Bell test: measurement settings from milky way stars. Rev. Rev. Lett. 118, 060401 (2017)

    Article  ADS  Google Scholar 

  29. Rauch, D., Handsteiner, J., Hochrainer, A., Gallicchio, J., Friedman, A.S., Leung, C., Liu, B., Bulla, L., Ecker, S., Steinlechner, F., Ursin, R., Hu, B., Leon, D., Benn, C., Ghedina, A., Cecconi, M., Guth, A.H., Kaiser, D.I., Scheidl, T., Zeilinger, A.: Cosmic Bell test using random measurement settings from high-redshift quasars. Rev. Rev. Lett. 121, 080403 (2018)

    Article  ADS  Google Scholar 

  30. The BIG Bell Test Collaboration: Challenging local realism with human choices. Nature 557, 212–216 (2018)

    Article  ADS  Google Scholar 

  31. Hess, K.: A critical review of works pertinent to the Einstein–Bohr debate and Bell’s theorem. Symmetry 14, 163 (2022)

    Article  ADS  Google Scholar 

  32. Khrennikov, A.: Is the Devil in h? Entropy 23, 632 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  33. Christian, J.: Dr. Bertlmann’s socks in the quaternionic world of ambidextral reality. IEEE Access 8, 19102848 (2020)

    Article  Google Scholar 

  34. Kupczynski, M.: Quantum mechanics and modeling of physical reality. Phys. Scr. 93, 123001 (2018)

    Article  ADS  Google Scholar 

  35. Heisenberg, W.: Physics and Philosophy. George Allen and Unwin Edition (1959)

  36. Kant, I.: The Critique of Pure Reason. Cambridge University Press, Cambridge (1998)

    Book  Google Scholar 

  37. Einstein, A.: Remarks concerning the essays brought together in this co-operative volume. In: Schillp, P.A. (ed.) Albert Einstein philosopherscientist, pp. 665–688. Illinois, Evanston (1949)

  38. Greenberger, D.M., Horne, M.A., Zeilinger, A. In: Kafatos, M. (ed.) Bells Theorem, Quantum Theory and Conceptions of the Universe, pp. 73–76. Kluwer Academic, Dordrecht (1989)

  39. Greenberger, D.M., Horne, M.A., Shimony, A., Zeilinger, A.: Bell’s theorem without inequalities. Am. J. Phys. 58, 1131–1143 (1990)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  40. Clifton, R.K., Redhead, M.L.G., Butterfield, J.N.: Generalization of the Greenberger–Horne–Zeilinger algebraic proof of nonlocality. Found. Phys. 21, 149–184 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  41. Hnilo, A.A.: On testing objective local theories by using Greenberger–Horne–Zeilinger states. Found. Phys. 24, 139–162 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  42. Belnap, N., Szabo, L.E.: Branching space-time analysis of the GHZ theorem. Found. Phys. 26, 989–1002 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  43. Vaidman, L.: Variations on the theme of the Greenberger–Horne–Zeilinger proof. Found. Phys. 29, 615–630 (1999)

    Article  MathSciNet  Google Scholar 

  44. Bernstein, H.J.: Simple version of the Greenberger–Horne–Zeilinger (GHZ) argument against local realism. Found. Phys. 29, 521–525 (1999)

    Article  MathSciNet  Google Scholar 

  45. Brunner, N., Cavalcanti, D., Pironio, S., Scarani, V.: Bell nonlocality. Rev. Mod. Phys. 86, 419–478 (2014)

    Article  ADS  Google Scholar 

  46. Kellner, J.: Pitowsky’s Kolmogorovian models and super-determinism. Found. Phys. 47, 132–148 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  47. Held, C.: Non-contextual and local hidden-variable model for the Peres–Mermin and Greenberger–Horne–Zeilinger Systems. Found. Phys. 51, 33 (2021)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  48. Lambare, J.P., Franco, R.: A note on Bell’s theorem logical consistency. Found. Phys. 51, 84 (2021)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  49. Svozil, K.: Generalized Greenberger–Horne–Zeilinger arguments from quantum logical analysis. Found. Phys. 52, 4 (2022)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  50. Leegwater, G.: When Greenberger, Horne and Zeilinger meet Wigner’s friend. Found. Phys. 52, 68 (2022)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  51. Lad, F.: Entropy 22, 759 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  52. Landau, L.D., Lifshitz, E.M.: Quantum Mechanics: Non-Relativistic Theory, vol. 3. Elsevier Science, Oxford (1977)

    MATH  Google Scholar 

  53. Bell, J.S.: Bertlmann’s socks and the nature of reality. J. Phys. 42, 41–61 (1981)

    Google Scholar 

  54. Bernstein, J.: Quantum Profiles. Princeton University Press, Princeton (1991)

    Google Scholar 

  55. Dirac, A.M.: The Principles of Quantum Mechanics. Oxford University Press, Oxford (1958)

    Book  MATH  Google Scholar 

  56. von Neumann, J.: Mathematical Foundations of Quantum Mechanics. Princeton, NJ: Princeton University Press (1955); Mathematishe Grundlagen der Quantem-mechanik. Springer, Berlin (1932)

  57. Bohm, D.: Quantum Theory. Prentice-Hall, New York (1951)

    Google Scholar 

  58. Schrodinger, E.: Discussion of probability relations between separated systems. Proc. Camb. Phil. Soc. 31, 555–562 (1935)

    Article  ADS  MATH  Google Scholar 

  59. Schrodinger, E.: Die gegenwartige Situation in der Quantenmechanik. Naturwissenschaften 23, 807–812, 823–828, 844–849 (1935)

  60. Einstein, A.: Einleitende Bemerkungen ub Grundbegriffe. in Louis de Broglie, physicien et penseur, Paris, pp. 4–14 (1953)

  61. Gerlach, W., Stern, O.: Das magnetische Moment des Silberatoms. Zeitschrift fur Physik 9, 353–355 (1922)

    Article  ADS  Google Scholar 

  62. Einstein, A., Ehrenfest, P.: Quantentheoretische Bemerkungen zum experiment von Stern und Gerlach. Zs. Phys. 11, 31–34 (1922)

    Article  ADS  Google Scholar 

  63. Einstein A.: Electrons et photons. Rapports et discussions du cinquieme Gonseil de physique- Bruxelles du 24 au 29 octobre 1927 sous les auspices de 1’ Institut International de physique Solvay, pp. 253–256. Paris, Gautier-Villars et Gie, editeurs (1928)

  64. Heisenberg, W.: Der Teil und das Ganze. Gesprache im Umkreis der Atomphysik, Munchen (1969)

    Google Scholar 

  65. Bell, J.S.: Against Measurement. in the proceedings of 62Years of Uncertainty, Plenum Publishing, New York (1989); Physics World, 3, 33–40 (1990)

  66. Bell J.S.: The theory of local beables. Epistemological Letters, March 1976; reproduced in the book [20]

  67. Schrodinger, E.: Science and Humanism. Physics in Our Time. Cambridge University Press, Cambridge (1952)

    Google Scholar 

  68. Bell, J.S.: On the problem of hidden variables in quantum mechanics. Rev. Mod. Phys. 38, 447–452 (1966)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  69. Bohr, N.: Discussion with Einstein on Epistemological Problems in Atomic Physics. in Albert Einstein philosopher - scientist. Ed. by P.A. Schillp. The library of the living philosophers, v. 7. Evanston, Illinois, pp. 201–241 (1949)

  70. Heisenberg, W.: The physical content of quantum kinematics and mechanics. Zeilschrift fur Physik 43, 172–198 (1927)

    Article  ADS  MATH  Google Scholar 

  71. Bohr, N.: The quantum postulate and the recent development of atomic theory. Nature 121, 580–590 (1928)

    Article  ADS  MATH  Google Scholar 

  72. Ortega y Gasset, J.: The Revolt of the Masses. W. W. Norton and Company, New York (1994)

    Google Scholar 

  73. Gurtovoi, V. L., Nikulov, A. V.: Energy of magnetic moment of superconducting current in magnetic field. Physica C 516, 50–54 (2015). arXiv: 1501.00468

  74. Nikulov, A.V.: Could ordinary quantum mechanics be just fine for all practical purposes? Quantum Stud. 3, 41–55 (2016)

    Article  MATH  Google Scholar 

  75. Nikulov, A.V.: The quantum mechanics is a non-universal theory. The realistic Schrodinger’s and positivistic Born’s interpretation of the wave function. arXiv: 1311.4760 (2013)

  76. Nikulov, A. V.: Bohm’s quantum potential and quantum force in superconductor. AIP Conference Proceedings, Vol. 1101 "Foundations of Probability and Physics-5" pp. 134–143 (2009). arXiv: 0812.4118 (2008)

  77. Strambini, E., et al.: Coherent detection of electron dephasing. Phys. Rev. Lett. 104, 170403 (2010)

    Article  ADS  Google Scholar 

  78. Nikulov A.V.: Comment on "Coherent Detection of Electron Dephasing". arXiv: 1006.5662 (2010)

  79. Ginzburg V.L., Landau, L.D.: On the theory of superconductivity. Zh.Eksp.Teor.Fiz. 20, 1064–1076 (1950)

  80. Bardeen, J., Cooper, L.N., Schrieffer, J.R.: Theory of superconductivity. Phys. Rev. 108, 1175 (1957)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  81. Hirsch, J.E.: Inconsistency of the conventional theory of superconductivity. EPL 130, 17006 (2020)

    Article  ADS  Google Scholar 

  82. Hirsch, J.E.: Joule heating in the normal-superconductor phase transition in a magnetic field. Physica C 576, 1353687 (2020)

    Article  ADS  Google Scholar 

  83. Hirsch, J.E.: Thermodynamic inconsistency of the conventional theory of superconductivity. Int. J. Mod. Phys. B 34, 2050175 (2020)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  84. Nikulov, A.V.: Dynamic processes in superconductors and the laws of thermodynamics. Physica C 589, 1353934 (2021)

    Article  ADS  Google Scholar 

  85. Nikulov, A.V.: The law of entropy increase and the Meissner effect. Entropy 24, 83 (2022)

    Article  ADS  MathSciNet  Google Scholar 

  86. Einstein, A.: letter to E. Schrodinger, 31 May 1928, reprinted in Letters on Wave Mechanics, ed. M. Klein, New York: Philosophical Library (1967)

Download references

Acknowledgements

This work was made in the framework of State Task No 075-01304-23-00.

Author information

Authors and Affiliations

Authors

Contributions

AN wrote the main text and reviewed the manuscript.

Corresponding author

Correspondence to Alexey Nikulov.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nikulov, A. Physical Thinking and the GHZ Theorem. Found Phys 53, 51 (2023). https://doi.org/10.1007/s10701-023-00693-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10701-023-00693-y

Keywords

Navigation