Skip to main content
Log in

On the Emergent Origin of the Inertial Mass

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

In the context of a particular framework of emergent quantum mechanics, it is argued the emergent origin of the inertial mass of a physical system. Two main consequences of the theory are discussed: an emergent interpretation of the law of inertia and a derivation of the energy-time uncertainty relation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Penrose, R.: On gravity’s role in quantum state reduction. Gen. Relat. Gravity 8(5), 581 (1996)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Penrose, R.: The Road to Reality. Vintage, London (2005)

    MATH  Google Scholar 

  3. Penrose, R.: On the gravitization of quantum mechanics 1: quantum state reduction. Found. Phys. 44(5), 557 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Jacobson, T.: Thermodynamics of spacetime: the Einstein equation of state. Phys. Rev. Lett. 75, 1260 (1995)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Verlinde, E.: On the origin of gravity and the Laws of Newton. J. High Energy Phys. 2011, 29 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  6. Verlinde, E.: Emergent gravity and the dark universe. Sci. Post. Phys. 2, 016 (2017)

    Article  ADS  Google Scholar 

  7. Padmanabhan, T.: Gravity as an emergent phenomenon: conceptual aspects. AIP Conf. Proc. 1458(1), 238–252 (2012)

    Article  ADS  Google Scholar 

  8. Padmanabhan, T.: Emergent perspective of gravity and dark energy. Res. Astron. Astrophys. 12, 891–916 (2012)

    Article  ADS  Google Scholar 

  9. Padmanabhan, T.: Emergent gravity paradigm: recent progress. Mod. Phys. Lett. A 30, 1540007 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Adler, S.L.: Quantum Theory as an Emergent Phenomenon: The Statistical Mechanics of Matrix Models as the Precursor of Quantum Field Theory. Cambridge University Press, Cambridge (2004)

    Book  MATH  Google Scholar 

  11. Dolce, D.: Elementary spacetime cycles. Europhys. Lett. 102, 31002 (2013)

    Article  ADS  Google Scholar 

  12. Elze, H.T.: Quantum mechanics emerging from timeless classical dynamics. quant-ph/0306096 [quant-ph]

  13. Elze, H.T.: Symmetry aspects in emergent quantum mechanics. J. Phys. Conf. Ser. 171, 012034 (2009)

    Article  Google Scholar 

  14. Gallego Torromé, R.: Foundations for a theory of emergent quantum mechanics and emergent classical gravity. arXiv:1402.5070 [math-ph]

  15. ’t Hooft, G.: The Cellular Automaton Interpretation of Quantum Mechanics, Fundamental Theories in Physics, Vol. 185. Springer, New York (2016)

  16. ’t Hooft, G.: Fast Vacuum Fluctuations and the Emergence of Quantum Mechanics. Found. Phys. 51, Article Number 63 (2021)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Sharma, A., Singh, T.P.: How the quantum emerges from gravity. Int. J. Mod. Phys. D 23(12), 2007 (2014)

    Article  MATH  Google Scholar 

  18. De, S., Singh, T.P., Varma, A.: Quantum gravity as an emergent phenomenon. Int. J. Mod. Phys. D 28(14), 1944003 (2019)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Singh, T.P.: From quantum foundations, to spontaneous quantum gravity: an overview of the new theory. Z. Naturforsch. A 75, 833 (2020)

    Article  ADS  Google Scholar 

  20. Acosta, D., Fernández de Córdoba, P., Isidro, J.M., González Santander, J.L.: An entropic picture of emergent quantum mechanics. Int. J. Geom. Meth. Mod. Phys. 9, 1250048 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  21. Acosta, D., FernándezdeCórdoba, P., Isidro, J.M., González Santander, J.L.: Emergent quantum mechanics as a classical, irreversible thermodynamics. Int. J. Geom. Methods Mod. Phys. 10, 1350007 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  22. Fernández de Córdoba, P., Isidro, J.M., Milton, Perea, H.: Emergent quantum mechanics as thermal ensemble. Int. J. Geom. Meth. Mod. Phys. 11, 1450068 (2014)

  23. FernandezdeCordoba, P., Isidro, J.M., Vazquez Molina, J.: The holographic quantum. Found. Phys. 46(7), 787–803 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. GallegoTorromé, R.: A Finslerian version of ’t Hooft deterministic quantum models. J. Math. Phys. 47, 072101 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  25. Gallego Torromé, R.: Emergence of classical gravity and the objective reduction of the quantum state in deterministic models of quantum mechanics. J. Phys. Conf. Ser. 626, 012073 (2015)

    Article  Google Scholar 

  26. Gallego Torrmé, R.: Emergent quantum mechanics and the origin of quantum non-local correlations. Int. J. Theor. Phys. 56, 3323 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  27. Gallego Torromé, R.: Some consequences of theories with maximal acceleration in laser-plasma acceleration. Mod. Phys. Lett. A 34, 1950118 (2019)

    Article  MathSciNet  Google Scholar 

  28. Arnold, V.: Mathematical Methods of Classical Mechanics. Springer, New York (1989)

    Book  Google Scholar 

  29. Gallego Torromé, R.: General theory of non-reversible local dynamics. Int. J. Geom. Methods Mod. Phys. 18(07), 2150111 (2021)

    Article  MathSciNet  Google Scholar 

  30. Bars, I.: Survey of two-time physics. Class. Quant. Gravity 18, 3113–3130 (2001)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. Gallego Torromé, R.: On the origin of the weak equivalence principle in a theory of emergent quantum mechanics. Int. J. Geom. Methods Mod. Phys. 17(10), 2050157 (2020)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ricardo Gallego Torromé.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Torromé, R.G., Isidro, J.M. & de Córdoba, P.F. On the Emergent Origin of the Inertial Mass. Found Phys 53, 52 (2023). https://doi.org/10.1007/s10701-023-00689-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10701-023-00689-8

Keywords

Navigation