Skip to main content
Log in

Entanglement and the Path Integral

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

The path integral is not typically utilized for analyzing entanglement experiments, in part because there is no standard toolbox for converting an arbitrary experiment into a form allowing a simple sum-over-history calculation. After completing the last portion of this toolbox (a technique for implementing multi-particle measurements in an entangled basis), some interesting 4- and 6-particle experiments are analyzed with this alternate technique. While the joint probabilities of measurement outcomes are always equivalent to conventional quantum mechanics, differences in the calculations motivate a number of foundational insights, concerning nonlocality, retrocausality, and the objectivity of entanglement itself.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. This rule, and the other rules below, can be motivated by Eq. (1); squaring this amplitude gives the stated 50% probability for each possibility.

  2. A third option, superdeterminism, posits a common cause of both \(\lambda\) and the settings.

  3. Just as we would naturally say that such normal modes were caused by all of the adjustable mirror positions, the solution of an all-at-once calculation is caused by all of the controllable boundaries on the problem, both past and future.

References

  1. Tyagi, N., Wharton, K.: Spacetime path integrals for entangled states. Found. Phys. 52(1), 1–23 (2022)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Pan, J.-W., Bouwmeester, D., Weinfurter, H., Zeilinger, A.: Experimental entanglement swapping: entangling photons that never interacted. Phys. Rev. Lett. 80(18), 3891 (1998)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Peres, A.: Delayed choice for entanglement swapping. J. Mod. Opt. 47(2–3), 139–143 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  4. Ma, X.-S., Zotter, S., Kofler, J., Ursin, R., Jennewein, T., Brukner, Č, Zeilinger, A.: Experimental delayed-choice entanglement swapping. Nat. Phys. 8(6), 479–484 (2012)

    Article  Google Scholar 

  5. Renou, M.-O., Bäumer, E., Boreiri, S., Brunner, N., Gisin, N., Beigi, S.: Genuine quantum nonlocality in the triangle network. Phys. Rev. Lett. 123(14), 140401 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  6. Feynman, R.P.: QED: The Strange Theory of Light and Matter, vol. 33. Princeton University Press, Princeton (2006)

    Google Scholar 

  7. Sinha, S., Sorkin, R.D.: A sum-over-histories account of an epr (b) experiment. Found. Phys. Lett. 4(4), 303–335 (1991)

    Article  MathSciNet  Google Scholar 

  8. Hensen, B., Bernien, H., Dréau, A.E., Reiserer, A., Kalb, N., Blok, M.S., Ruitenberg, J., Vermeulen, R.F., Schouten, R.N., Abellán, C., et al.: Loophole-free bell inequality violation using electron spins separated by 1.3 kilometres. Nature 526(7575), 682–686 (2015)

    Article  ADS  Google Scholar 

  9. Ning, W., Huang, X.-J., Han, P.-R., Li, H., Deng, H., Yang, Z.-B., Zhong, Z.-R., Xia, Y., Xu, K., Zheng, D., et al.: Deterministic entanglement swapping in a superconducting circuit. Phys. Rev. Lett. 123(6), 060502 (2019)

    Article  ADS  Google Scholar 

  10. Egg, M.: Delayed-choice experiments and the metaphysics of entanglement. Found. Phys. 43(9), 1124–1135 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Price, H., Wharton, K.: Entanglement swapping and action at a distance. Found. Phys. 51(6), 1–24 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  12. Wharton, K., Argaman, N.: Colloquium: Bell’s theorem and locally mediated reformulations of quantum mechanics. Rev. Mod. Phys. 92(2), 021002 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  13. Wharton, K., Adlam, E.: Anti-correlated photons from classical electromagnetism. Phys. Rev. A 2022, 14 (2022)

    Google Scholar 

  14. Adlam, E.: Contextuality, fine-tuning and teleological explanation. Found. Phys. 51(6), 1–40 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  15. Kraft, T., Designolle, S., Ritz, C., Brunner, N., Gühne, O., Huber, M.: Quantum entanglement in the triangle network. Phys. Rev. A 103(6), 060401 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  16. Tavakoli, A., Pozas-Kerstjens, A., Renou, M.-O., et al.: Bell nonlocality in networks. Rep. Prog. Phys. 85, 056001 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  17. Pozas-Kerstjens, A., Gisin, N., Renou, M.-O.: Proofs of network quantum nonlocality aided by machine learning. arXiv preprint arXiv:2203.16543 (2022)

  18. Wharton, K.: Quantum states as ordinary information. Information 5(1), 190–208 (2014)

    Article  MathSciNet  Google Scholar 

  19. Adlam, E.: Laws of nature as constraints. Found. Phys. 52(1), 1–41 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  20. Chen, E.K., Goldstein, S.: Governing without a fundamental direction of time: minimal primitivism about laws of nature. In: Ben-Menahem, Y. (ed.) Rethinking Laws of Nature. Springer, Berlin (2022)

    Google Scholar 

  21. Wharton, K.B., Miller, D.J., Price, H.: Action duality: a constructive principle for quantum foundations. Symmetry 3(3), 524–540 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Schulman, L.S.: Time’s Arrows and Quantum Measurement. Cambridge University Press, Cambridge (1997)

    Book  Google Scholar 

  23. Wharton, K.: Time-symmetric boundary conditions and quantum foundations. Symmetry 2(1), 272–283 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  24. Wharton, K.: Towards a realistic parsing of the Feynman path integral. Quanta 5(1), 1–11 (2016)

    Article  MathSciNet  Google Scholar 

  25. Adlam, E.: Two roads to retrocausality. arXiv preprint arXiv:2201.12934 (2022)

  26. Almada, D., Ch’ng, K., Kintner, S., Morrison, B., Wharton, K.: Are retrocausal accounts of entanglement unnaturally fine-tuned? Int. J. Quantum Found. 2, 1–14 (2016)

    Google Scholar 

  27. Wharton, K.: A new class of retrocausal models. Entropy 20(6), 410 (2018)

    Article  ADS  Google Scholar 

  28. Sutherland, R.: Probabilities and certainties within a causally symmetric model. arXiv preprint arXiv:2112.10022 (2021)

Download references

Acknowledgements

The authors would like to thank N.Argaman for bringing the intriguing features of the triangle network to our attention (and other useful advice), H. Price for encouraging us to think more carefully about entanglement swapping, E. Adlam for very useful insights, and of course N. Tyagi for her work on which this paper was based.

Author information

Authors and Affiliations

Authors

Contributions

KW wrote the main manuscript text and RL designed the general entangled measurement, performed calculations, and prepared the figures and equations. All authors reviewed the manuscript.

Corresponding author

Correspondence to Ken Wharton.

Ethics declarations

Competing Interests

The authors have no competing interests to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wharton, K., Liu, R. Entanglement and the Path Integral. Found Phys 53, 23 (2023). https://doi.org/10.1007/s10701-022-00664-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10701-022-00664-9

Keywords

Navigation