Skip to main content
Log in

Continuous Variable Controlled Quantum Conference

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

Using different quantum states (e.g., two mode squeezed-state, multipartite GHZ-like-states) as quantum resources, two protocols for "continuous variable (CV) controlled quantum conference" are proposed. These CV protocols for controlled quantum conferences (CQCs) are the first of their kind and can be reduced to CV protocols for various other cryptographic tasks. In the proposed protocols, Charlie is considered the controller, having the power to terminate the protocol at any time and to control the flow of information among the other users by using a parameterised control switch. Based on the information shared by Charlie with the participants of the conference, the control power of Charlie is evaluated and compared to the proposed protocols. The comparison of the efficiency of the proposed protocols has revealed that, under certain constraints, the 4-mode GHZ state-based protocol is more efficient than the two-mode squeezed state-based protocol. The control power Charlie is evaluated for the proposed protocols under certain constraints. A security analysis is also performed, and it is observed that the proposed protocols are secure against a variety of attacks, including but not limited to disturbance attacks, man-in-the-middle attacks, Trojan horse attacks, laser seeding attacks, cloning attacks, beam splitter attacks, and malicious user(s) attacks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Bennett, C.H., Brassard, G.: Quantum cryptography: Public key distribution and coin tossing. In: International conference on computer system and signal processing, pp. 175–179. IEEE (1984)

  2. Srikara, S., Thapliyal, K., Pathak, A.: Continuous variable B92 quantum key distribution protocol using single photon added and subtracted coherent states. Quantum Inf. Process. 19(10), 371 (2020)

    ADS  MathSciNet  MATH  Google Scholar 

  3. Christophe, M., Townsend Paul, D.: Quantum key distribution over distances as long as 30 km. Opt. Lett. 20(16), 1695–1697 (1995)

    Google Scholar 

  4. Cabello, Adán.: Quantum key distribution in the Holevo limit. Phys. Rev. Lett. 85(26), 5635 (2000)

    ADS  Google Scholar 

  5. Lo, H.K., Chau, H.F.: Unconditional security of quantum key distribution over arbitrarily long distances. Science 283(5410), 2050–2056 (1999)

    ADS  Google Scholar 

  6. Ribordy, G., Brendel, J., Gautier, J.-D., Gisin, N., Zbinden, H.: Long-distance entanglement-based quantum key distribution. Phys. Rev. A 63(1), 012309 (2000)

    ADS  Google Scholar 

  7. Scarani, V., Bechmann-Pasquinucci, H., Cerf, N.J., Dušek, M., Lütkenhaus, N., Peev, M.: The security of practical quantum key distribution. Rev. Mod. Phys. 81(3), 1301 (2009)

    ADS  Google Scholar 

  8. Barrett, J., Hardy, L., Kent, A.: No signaling and quantum key distribution. Phys. Rev. Lett. 95(1), 010503 (2005)

    ADS  Google Scholar 

  9. Long, G., Deng, F., Wang, C., Li, X., Wen, K., Wang, W.: Quantum secure direct communication and deterministic secure quantum communication. Front. Phys. China 2(3), 251–272 (2007)

    ADS  Google Scholar 

  10. Wang, C., Deng, F.G., Li, Y.S., Liu, X.S., Long, G.L.: Quantum secure direct communication with high-dimension quantum superdense coding. Phys. Rev. A 71(4), 044305 (2005)

    ADS  Google Scholar 

  11. Fei, G., Song, L., Qiao-Yan, W., Fu-Chen, Z.: A special eavesdropping on one-sender versus n-receiver qsdc protocol. Chin. Phys. Lett. 25(5), 1561 (2008)

    ADS  Google Scholar 

  12. Yang, C.-W., Hwang, T.: Improved qsdc protocol over a collective-dephasing noise channel. Int. J. Theor. Phys. 51(12), 3941–3950 (2012)

    MathSciNet  MATH  Google Scholar 

  13. Nguyen, B.A.: Quantum dialogue. Phys. Lett. A 328(1), 6–10 (2004)

    ADS  MathSciNet  MATH  Google Scholar 

  14. Zhong-Xiao, M., Zhan-Jun, Z., Yong, L.: Quantum dialogue revisited. Chin. Phys. Lett. 22(1), 22 (2005)

    ADS  Google Scholar 

  15. Xia, Y., Chang-Bao, F., Zhang, S., Hong, S.-K., Yeon, K.-H., Um, C.-I.: Quantum dialogue by using the ghz state. J. Korean Phys. Soc. 48(1), 24 (2006)

    Google Scholar 

  16. Xin, J., Shou, Z.: Secure quantum dialogue based on single-photon. Chin. Phys. 15(7), 1418 (2006)

    Google Scholar 

  17. Xi-Han, L., Chun-Yan, L., Fu-Guo, D., Ping, Z., Yu-Jie, L., Hong-Yu, Z.: Multiparty quantum remote secret conference. Chin. Phys. Lett. 24(1), 23 (2007)

    ADS  Google Scholar 

  18. Bin, G., Chuan-Qi, L., Yu-Lin, C.: Multiparty quantum secret conference based on quantum encryption with pure entangled states. Chin. Phys. B 18(6), 2137 (2009)

    ADS  Google Scholar 

  19. Banerjee, A., Thapliyal, K., Shukla, C., Pathak, A.: Quantum conference. Quantum Inf. Process. 17(7), 161 (2018)

    ADS  MathSciNet  MATH  Google Scholar 

  20. Chang, L.-W., Zhang, Y.-Q., Tian, X.-X., Qian, Y.-H., Zheng, S.-H., Liu, Y.: Fault tolerant multi-party authenticated quantum conference against collective noise. Int. J. Theor. Phys. 59(3), 786–806 (2020)

    MathSciNet  MATH  Google Scholar 

  21. Sheng, Z., Jian, W., Chao-Jing, T., Quan, Z.: Network-topology-adaptive quantum conference protocols. Chin. Phys. B 20(8), 080306 (2011)

    Google Scholar 

  22. Yadong, W., Zhou, J., Gong, X., Guo, Y., Zhang, Z.-M., He, G.: Continuous-variable measurement-device-independent multipartite quantum communication. Phys. Rev. A 93(2), 022325 (2016)

    ADS  Google Scholar 

  23. Zhang, Y., Chen, Z., Pirandola, S., Wang, X., Zhou, C., Chu, B., Zhao, Y., Xu, B., Yu, S., Guo, H.: Long-distance continuous-variable quantum key distribution over 202.81 km of fiber. Phys. Rev. Lett. 125(1), 010502 (2020)

    ADS  Google Scholar 

  24. Asif, R., Buchanan, W.J.: Quantum-to-the-home: Achieving gbits/s secure key rates via commercial off-the-shelf telecommunication equipment. Secur. Commun. Netw. (2017). https://doi.org/10.1155/2017/7616847

    Article  Google Scholar 

  25. Saxena, A., Thapliyal, K., Pathak, A.: Continuous variable controlled quantum dialogue and secure multiparty quantum computation. Int. J. Quantum Inf. 18(04), 2050009 (2020)

    MathSciNet  MATH  Google Scholar 

  26. Dong, L., Xiu, X.-M., Gao, Y.-J., Chi, F.: A controlled quantum dialogue protocol in the network using entanglement swapping. Opt. Commun. 281(24), 6135–6138 (2008)

    ADS  Google Scholar 

  27. Yan, X., Jie, S., Jing, N., He-Shan, S.: Controlled secure quantum dialogue using a pure entangled ghz states. Commun. Theor. Phys. 48(5), 841 (2007)

    ADS  Google Scholar 

  28. Srikara, S., Thapliyal, K., Pathak, A.: Continuous variable direct secure quantum communication using gaussian states. Quantum Inf. Process. 19(4), 132 (2020)

    ADS  MathSciNet  MATH  Google Scholar 

  29. Chen, X.-B., Wang, T.-Y., Jian-Zhong, D., Wen, Q.-Y., Zhu, F.-C.: Controlled quantum secure direct communication with quantum encryption. Int. J. Quantum Inf. 6(03), 543–551 (2008)

    MATH  Google Scholar 

  30. Wang, J., Zhang, Q., Tang, C.: Multiparty controlled quantum secure direct communication using Greenberger-Horne-Zeilinger state. Opt. Commun. 266(2), 732–737 (2006)

    ADS  Google Scholar 

  31. Gao, F., Qin, S.-J., Wen, Q.-Y., Zhu, F.-C.: Cryptanalysis of multiparty controlled quantum secure direct communication using Greenberger-Horne-Zeilinger state. Opt. Commun. 283(1), 192–195 (2010)

    ADS  Google Scholar 

  32. Smania, M., Elhassan, A.M., Tavakoli, A., Bourennane, M.: Experimental quantum multiparty communication protocols. NPJ Quantum Inf. 2(1), 16010 (2016)

    ADS  Google Scholar 

  33. Proietti, M., Ho, J., Grasselli, F., Barrow, P., Malik, M., Fedrizzi, A.: Experimental quantum conference key agreement. Sci. Adv. 7(23), eabe0395 (2021)

    ADS  Google Scholar 

  34. Srinatha, N., Omkar, S., Srikanth, R.: Subhashish Banerjee, and Anirban Pathak. The quantum cryptographic switch. Quantum Inf. Process. 13(1), 59–70 (2014)

    ADS  Google Scholar 

  35. Thapliyal, K., Pathak, A.: Applications of quantum cryptographic switch: various tasks related to controlled quantum communication can be performed using Bell states and permutation of particles. Quantum Inf. Process. 14(7), 2599–2616 (2015)

    ADS  MathSciNet  MATH  Google Scholar 

  36. Murta, G., Grasselli, F., Kampermann, H., Bruß, D.: Quantum conference key agreement: A review. Adv. Quantum Technol. 3(11), 2000025 (2020)

    Google Scholar 

  37. Gong, L.-H., Tian, C., Li, J.-F., Zou, X.: Quantum network dialogue protocol based on continuous-variable ghz states. Quantum Inf. Process. 17(12), 331 (2018)

    ADS  MathSciNet  MATH  Google Scholar 

  38. van Loock, P., Braunstein, S.L.: Multipartite entanglement for continuous variables: A quantum teleportation network. Phys. Rev. Lett. 84(15), 3482 (2000)

    ADS  Google Scholar 

  39. Yonezawa, H., Aoki, T., Furusawa, A.: Demonstration of a quantum teleportation network for continuous variables. Nature 431(7007), 430 (2004)

    ADS  Google Scholar 

  40. Zhen-Bo, Y., Gong, L.-H., Zhu, Q.-B., Cheng, S., Zhou, N.-R.: Efficient three-party quantum dialogue protocol based on the continuous variable GHZ states. Int. J. Theor. Phys. 55(7), 3147–3155 (2016)

    MathSciNet  MATH  Google Scholar 

  41. Ya-Jun, W., Wen-Hai, Y., Yao-Hui, Z., Kun-Chi, P.: A compact Einstein-Podolsky-Rosen entangled light source. Chin. Phys. B 24(7), 070303 (2015)

    Google Scholar 

  42. Jing, J., Zhang, J., Yan, Y., Zhao, F., Xie, C., Peng, K.: Experimental demonstration of tripartite entanglement and controlled dense coding for continuous variables. Phys. Rev. Lett. 90(16), 167903 (2003)

    ADS  Google Scholar 

  43. Huang, D., Huang, P., Lin, D., Zeng, G.: Long-distance continuous-variable quantum key distribution by controlling excess noise. Sci. Rep. 6, 19201 (2016)

    ADS  Google Scholar 

  44. Pan, Y., Zhang, L., Huang, D.: Practical security bounds against trojan horse attacks in continuous-variable quantum key distribution. Appl. Sci. 10(21), 7788 (2020)

    Google Scholar 

  45. Zheng, Y., Huang, P., Huang, A., Peng, J., Zeng, G.: Security analysis of practical continuous-variable quantum key distribution systems under laser seeding attack. Opt. Express 27(19), 27369–27384 (2019)

    ADS  Google Scholar 

  46. Zheng, Y., Huang, P., Huang, A., Peng, J., Zeng, G.: Practical security of continuous-variable quantum key distribution with reduced optical attenuation. Phys. Rev. A 100(1), 012313 (2019)

    ADS  Google Scholar 

  47. Scarani, V., Iblisdir, S., Gisin, N., Acin, A.: Quantum cloning. Rev. Mod. Phys. 77(4), 1225 (2005)

    ADS  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

Authors acknowledge the support from the QUEST scheme of Interdisciplinary Cyber-Physical Systems (ICPS) program of the Department of Science and Technology (DST), India [Grant No.: DST/ICPS/QuST/Theme-1/2019/14 (Q80)]. The authors also thank Kishore Thapliyal for his interest in this work and for some valuable suggestions provided by him.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anirban Pathak.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saxena, A., Pathak, A. Continuous Variable Controlled Quantum Conference. Found Phys 53, 21 (2023). https://doi.org/10.1007/s10701-022-00661-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10701-022-00661-y

Keywords

Navigation