Skip to main content
Log in

The Point of Primitive Ontology

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

Bohmian mechanics grounds the predictions of quantum mechanics in precise dynamical laws for a primitive ontology of point particles. In an appraisal of the de-Broglie–Bohm theory, the paper discusses the crucial epistemological and conceptual role that a primitive ontology plays within a physical theory. It argues that quantum theories without primitive ontology fail to make contact with observable reality in a clear and consistent manner. Finally, it discusses Einstein’s epistemological model and why it supports the primitive ontology approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

Notes

  1. For modern presentations of the theory, see [1,2,3,4].

  2. Even the sound of a clicking detector corresponds to matter in motion (sound waves in air), and something in the configuration of the detector has to change to produce them.

  3. The term primitive ontology was first introduced by Dürr, Goldstein, and Zanghì in 1992 [13]. For detailed discussions, see, e.g., [14,15,16]; cf. Maudlin’s notion of primary ontology in [17].

  4. E.g., the GRW flash theory (see below) or certain formulations of quantum field theory.

  5. Apparently based on the questionable idea that they are better candidates for ontology than the observable-operators of non-relativistic quantum mechanics.

  6. For the definition of effective wave functions of subsystems, see [13]. For the classical limit of Bohmian mechanics, see [44], reprinted as Ch. 5 in [2], or the textbook of Dürr and Teufel [1].

  7. That the projections are not multiplied by constants \(m_i\) is secondary; the masses appear as parameters in the Schrödinger equation whence they affect the dynamics of the shadows.

  8. Which only underscores the need to understand its physical role in terms of a PO.

References

  1. Dürr, D., Teufel, S.: Bohmian Mechanics: The Physics and Mathematics of Quantum Theory. Springer, Berlin (2009)

    MATH  Google Scholar 

  2. Dürr, D., Goldstein, S., Zanghì, N.: Quantum Physics Without Quantum Philosophy. Springer, Berlin (2013)

    Book  MATH  Google Scholar 

  3. Bricmont, J.: Making Sense of Quantum Mechanics. Springer, Cham (2016)

    Book  MATH  Google Scholar 

  4. Dürr, D., Lazarovici, D.: Understanding Quantum Mechanics : The World According to Modern Quantum Foundations. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-40068-2

  5. Bohm, D.: A suggested interpretation of the quantum theory in terms of “hidden’’ variables. I and II. Phys. Rev. 85, 166–193 (1952)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. de Broglie, L.: La structure atomique de la matière et du rayonnement et la mécanique ondulatoire. C. R. Acad. Sci. Paris 184, 273–274 (1927)

    MATH  Google Scholar 

  7. de Broglie, L.: La mécanique ondulatoire et la structure atomique de la matière et du rayonnement. J. Phys. Radium 8, 225–241 (1927)

    Article  MATH  Google Scholar 

  8. Dürr, D., Goldstein, S., Norsen, T., Struyve, W., Zanghì, N.: Can Bohmian mechanics be made relativistic? Proc. R. Soc. A 470(2162), 20130699 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Dürr, D., Goldstein, S., Zanghì, N.: Quantum Physics Without Quantum Philosophy. Springer, Berlin (2013)

    Book  MATH  Google Scholar 

  10. Maudlin, T.: Philosophy of Physics: Quantum Theory. Princeton University Press, Princeton (2019)

    Book  MATH  Google Scholar 

  11. Bohm, D., Hiley, B.J.: The Undivided Universe. Routledge, London (1993)

    MATH  Google Scholar 

  12. Bell, J.S.: Speakable and Unspeakable in Quantum Mechanics. Collected Papers on Quantum Philosophy. Cambridge University Press, Cambridge (2004, 1st edn 1987)

  13. Dürr, D., Goldstein, S., Zanghì, N.: Quantum equilibrium and the origin of absolute uncertainty. J. Stat. Phys. 67, 843–907 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Allori, V., Goldstein, S., Tumulka, R., Zanghì, N.: On the common structure of Bohmian mechanics and the Ghirardi-Rimini-Weber theory. Br. J. Philos. Sci. 59(3), 353–389 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  15. Allori, V.: Primitive ontology and the structure of fundamental physical theories. In: Ney, A., Albert, D.Z. (eds.) The Wave Function: Essays on the Metaphysics of Quantum Mechanics, pp. 58–75. Oxford University Press, New York (2013)

    Chapter  Google Scholar 

  16. Esfeld, M.: From the measurement problem to the primitive ontology programme. In: Allori, V., Bassi, A., Dürr, D., Zanghi, N. (eds.) Do Wave Functions Jump? Perspectives of the Work of GianCarlo Ghirardi, pp. 95–108. Springer, Cham (2020)

    Google Scholar 

  17. Maudlin, T.: The Nature of the Quantum State. In: Ney, A., Albert, D.Z. (eds.) The Wave Function: Essays on the Metaphysics of Quantum Mechanics, pp. 126–153. Oxford University Press, Oxford (2013). https://doi.org/10.1093/acprof:oso/9780199790807.003.0006

  18. Lazarovici, D.: Against fields. Eur. J. Philos. Sci. 8(2), 145–170 (2018). https://doi.org/10.1007/s13194-017-0179-z

    Article  MathSciNet  MATH  Google Scholar 

  19. Chen, E.K.: Realism about the wave function. Philos. Compass 14(7), 12611 (2019)

    Article  Google Scholar 

  20. Maudlin, T.: Descrying the world in the wave function. Monist 80(1), 3–23 (1997)

    Article  Google Scholar 

  21. Sellars, W.: Empiricism and the Philosophy of Mind. Harvard University Press, Harvard (1997)

    Google Scholar 

  22. Aristoteles: Metaphysik. Schriften zur Ersten Philosophie (übersetzt und herausgegeben von Franz F. Schwarz). Reclam, Stuttgart (1970)

  23. Maudlin, T.: Three measurement problems. Topoi 14, 7–15 (1995)

    Article  MathSciNet  Google Scholar 

  24. Ghirardi, G.C., Rimini, A., Weber, Z.: Unified dynamics for microscopic and macroscopic systems. Phys. Rev. D 34, 470–491 (1986)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Cohen-Tannoudji, C., Dui, B., Laloe, F.: Quantum Mechanics. Volume 1. Wiley-VCH, Hoboken (1991, first edn 1977)

  26. Lazarovici, D., Oldofredi, A., Esfeld, M.: Observables and unobservables in quantum mechanics: how the no-hidden-variables theorems support the Bohmian Particle Ontology. Entropy 20(5), 381 (2018). https://doi.org/10.3390/e20050381

    Article  ADS  MathSciNet  Google Scholar 

  27. Frauchiger, D., Renner, R.: Quantum theory cannot consistently describe the use of itself. Nat Commun 9(1), 3711 (2018). https://doi.org/10.1038/s41467-018-05739-8

    Article  ADS  Google Scholar 

  28. Lazarovici, D., Hubert, M.: How Quantum Mechanics can consistently describe the use of itself. Sci Rep 9(1), 470 (2019). https://doi.org/10.1038/s41598-018-37535-1

    Article  ADS  Google Scholar 

  29. Vona, N., Hinrichs, G., Dürr, D.: What does one measure when one measures the arrival time of a quantum particle? Phys. Rev. Lett. 111(22), 220404 (2013). https://doi.org/10.1103/PhysRevLett.111.220404

    Article  ADS  Google Scholar 

  30. Das, S., Struyve, W.: Questioning the adequacy of certain arrival-time distributions. Phys. Rev. A 104, 142214 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  31. Das, S., Dürr, D.: Arrival time distributions of spin-1/2 particles. Sci. Rep. 9(1), 1–8 (2019). https://doi.org/10.1038/s41598-018-38261-4

    Article  ADS  Google Scholar 

  32. Albert, D.: Wave function realism. In: Ney, A., Albert, D. (eds.) The Wave Function: Essays on the Metaphysics of Quantum Mechanics, pp. 52–57. Oxford University Press, Oxford (2013)

    Chapter  Google Scholar 

  33. Wallace, D., Timpson, C.G.: Quantum mechanics on spacetime I: spacetime state realism. Br. J. Philos. Sci. 61(4), 697–727 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  34. Wallace, D.: The Emergent Multiverse: Quantum Theory According to the Everett Interpretation. Oxford University Press, Oxford (2012)

    Book  MATH  Google Scholar 

  35. Ghirardi, G.C., Grassi, R., Benatti, F.: Describing the macroscopic world: closing the circle within the dynamical reduction program. Found. Phys. 25, 5–38 (1995)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. Allori, V., Goldstein, S., Tumulka, R., Zanghì, N.: Many-worlds and schrödinger’s first quantum theory. Br. J. Philos. Sci. 62, 1–27 (2011)

    Article  MATH  Google Scholar 

  37. Esfeld, M.: Collapse or No Collapse? What Is the Best Ontology of Quantum Mechanics in the Primitive Ontology Framework? In: Gao, S. (ed.) Collapse of the Wave Function: Models, Ontology, Origin, and Implications, pp. 167–184. Cambridge University Press, Cambridge (2018). https://doi.org/10.1017/9781316995457.011

  38. Albert, D.: After Physics. Harvard University Press, Cambridge (2015)

    Book  Google Scholar 

  39. Ney, A.: Finding the world in the wave function: some strategies for solving the macro-object problem. Synthese 197(10), 4227–4249 (2017)

    Article  MathSciNet  Google Scholar 

  40. Ney, A.: The World in the Wave Function: A Metaphysics for Quantum Physics. Oxford University Press, Oxford (2021)

    Book  MATH  Google Scholar 

  41. Vaidman, L.: Ontology of the wave function and the many-worlds interpretation. In: Lombardi, O., Fortin, S., López, C., Holik, F. (eds.) Quantum Worlds: Perspectives on the Ontology of Quantum Mechanics, pp. 93–106. Cambridge University Press, Cambridge (2019)

    Chapter  Google Scholar 

  42. Carroll, S.M., Singh, A.: Mad-dog Everettianism: quantum mechanics at its most minimal. In: Aguirre, A., Foster, B., Merali, Z. (eds.) What Is Fundamental?, pp. 95–104. Springer, Cham (2019)

    Chapter  Google Scholar 

  43. Everett, H.: ‘Relative state’ formulation of quantum mechanics. Rev. Mod. Phys. 29(3), 454–462 (1957)

    Article  ADS  MathSciNet  Google Scholar 

  44. Allori, V., Dürr, D., Goldstein, S., Zanghì, N.: Seven steps towards the classical world. J. Opt. B 4(4), 482–488 (2002). https://doi.org/10.1088/1464-4266/4/4/344

    Article  ADS  Google Scholar 

  45. Bacciagaluppi, G., Valentini, A.: Quantum Theory at the Crossroads: Reconsidering the 1927 Solvay Conference. Cambridge University Press, Cambridge (2007)

    MATH  Google Scholar 

  46. Monton, B.: Wave function ontology. Synthese 130(2), 265–277 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  47. Monton, B.: Quantum mechanics and 3-N dimensional space. Philos. Sci. 73(5), 778–789 (2006)

    Article  MathSciNet  Google Scholar 

  48. Ney, A.: Fundamental physical ontologies and the constraint of empirical coherence. Synthese 192(10), 3105–3124 (2015). https://doi.org/10.1007/s001090000086

    Article  MathSciNet  MATH  Google Scholar 

  49. Esfeld, M., Lazarovici, D., Hubert, M., Dürr, D.: The ontology of Bohmian mechanics. Br. J. Philos. Sci. 65(4), 773–796 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  50. Hubert, M., Romano, D.: The wave-function as a multi-field. Eur. J. Philos. Sci. 8(3), 521–537 (2018). https://doi.org/10.1007/s13194-017-0198-9

    Article  MathSciNet  MATH  Google Scholar 

  51. Schilpp, P.A. (ed.): Albert Einstein: Philosopher-Scientist, 1st edn. The Library of Living Philosophers, vol. VII. The Library of Living Philosophers Inc., Evanston, Illinois (1949)

  52. Einstein, A.: Letters to Solovine, 1906–1955. Open Road Media, New York (2011)

    Google Scholar 

  53. Hempel, C.G.: Philosophy of Natural Science. Prentice-Hall, Englewood Cliffs, N.J. (1966)

    Google Scholar 

  54. Carnap, R.: Beobachtungssprache und theoretische Sprache. Dialectica 12(3–4), 236–248 (1958). https://doi.org/10.1111/j.1746-8361.1958.tb01461.x

    Article  MATH  Google Scholar 

  55. Nagel, E.: The Structure of Science: Problems in the Logic of Scientific Explanation. Harcourt, Brace & World, New York (1961)

    Book  Google Scholar 

  56. von Meyenn, K. (ed.): Eine Entdeckung von ganz außerordentlicher Tragweite: Schrödingers Briefwechsel zur Wellenmechanik und zum Katzenparadoxon. Springer, Berlin, Heidelberg (2011). https://doi.org/10.1007/978-3-642-04335-2

Download references

Acknowledgements

We thank Christian Beck for valuable discussions. Nino Zanghì was the first to tell us about Einstein’s epistemological model. About the epistemological role of primitive ontology, we learned a lot from Tim Maudlin’s talk “How Theory Meets the World” that we had the pleasure of attending many years ago. Section 3 of this essay was adapted from the forthcoming book “Typicality Reasoning in Probability, Physics, and Metaphysics” by Dustin Lazarovici.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dustin Lazarovici.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lazarovici, D., Reichert, P. The Point of Primitive Ontology. Found Phys 52, 120 (2022). https://doi.org/10.1007/s10701-022-00639-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10701-022-00639-w

Keywords

Navigation