Skip to main content
Log in

The Paradox of Classical Reasoning

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

Intuitively, the more powerful a theory is, the greater the variety and quantity of ideas can be expressed through its formal language. Therefore, when comparing two theories concerning the same subject, it seems only reasonable to compare the expressive powers of their formal languages. On condition that the quantum mechanical description is universal and so can be applied to macroscopic systems, quantum theory is required to be more powerful than classical mechanics. This implies that the formal language of Hilbert space theory must be more expressive than that of Zermelo-Fraenkel set theory (the language of classical formalism). However, as shown in the paper, such a requirement cannot be met. As a result, classical and quantum formalisms cannot be in a hierarchical relation, that is, include one another. This fact puts in doubt the quantum-classical correspondence and undermines the reductionist approach to the physical world.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Christopher, G.T.: Information, immaterialism, instrumentalism: old and new in quantum information. In: Bokulich, A., Jaeger, G. (eds.) Philosophy of Quantum Information and Entanglement, pp. 208–228. Cambridge University Press, Cambridge (2010)

    Google Scholar 

  2. Kevin C, Klement: Propositional Logic. In The Internet Encyclopedia of Philosophy, ISSN 2161-0002. https://www.iep.utm.edu/prop-log/ (2020)

  3. Stuart, S.: On Wavefunction Collapse, the Einstein-Podolsky-Rosen Paradox and Measurement in Quantum Mechanics and Field Theory. https://arXiv:1910.11134 (2021)

  4. Laloë, F.: Do we really understand quantum mechanics? Strange correlations, paradoxes, and theorems. Am. J. Phys. 69, 655–701 (2001)

    Article  ADS  Google Scholar 

  5. Scully, M., Drühl, K.: Quantum eraser: a proposed photon correlation experiment concerning observation and “delayed choice’’ in quantum mechanics. Phys. Rev. A 25(4), 2208–2213 (1982)

    Article  ADS  Google Scholar 

  6. Hardy, L.: Quantum mechanics, local realistic theories, and Lorentz-invariant realistic theories. Phys. Rev. Lett. 68(20), 2981–2984 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  7. Frauchiger, D., Renner, R.: Quantum theory cannot consistently describe the use of itself. Nat. Commun. 9, 3711 (2018)

    Article  ADS  Google Scholar 

  8. Bolotin, A.: Hardy’s paradox according to non-classical semantics. J. Math. Phys. 59:062101–1–062101–8 (2018)

  9. Nurgalieva, N., del Rio, L.: Inadequacy of modal logic in quantum settings. In: G. Chiribella, P. Selinger (Eds.), 15th International Conference on Quantum Physics and Logic (QPL 2018), pp. 267–297. EPTCS 287 (2019)

  10. Boge, F.J.: Quantum information versus epistemic logic: an analysis of the Frauchiger-Renner theorem. Found. Phys. 49, 1143–1165 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  11. Faye, J.: Copenhagen interpretation of quantum mechanics. In: E. Zalta (Ed.), The Stanford Encyclopedia of Philosophy. Metaphysics Research Lab, Stanford University, https://plato.stanford.edu/archives/win2019/entries/qm-copenhagen/ (2019)

  12. Fraassen, B. van: Formal Semantics and Logic. Nousoul Digital Publishers. https://www.princeton.edu/-fraassen/FormalSemanticsandLogic.pdf (2016)

  13. Shaw, J.R.: What is a truth-value gap? Linguistics Philos. 37, 503–534 (2014)

    Article  Google Scholar 

  14. Baskent, C.: Some topological properties of paraconsistent models. Synthese 190, 4023–4040 (2013)

    Article  MathSciNet  Google Scholar 

  15. Birkhoff, G., von Neumann, J.: The logic of quantum mechanics. Ann. Math. 37, 823–843 (1936)

    Article  MathSciNet  Google Scholar 

  16. Isham, C.J: Is it true; or is it false; or somewhere in between? The logic of quantum theory. In: William Demopoulos and Itamar Pitowsky, editors, Physical Theory and its Interpretation, pages 161–182. Springer, The Netherlands (2006)

  17. Hardegree, G.M.: The conditional in quantum logic. In: Patrick Suppes, editor, Logic and Probability in Quantum Mechanics, volume 78, pages 55–72. Synthese Library (1976)

  18. Chiara, M.L.D., Giuntini, R., Greechie, R.: Reasoning in Quantum Theory. Sharp and Unsharp Quantum Logics. Springer, Amsterdam (2004)

    Book  Google Scholar 

  19. Putnam, H.: Is logic empirical? In Robert Cohen and Marx Wartofsky, editors, Boston Studies in the Philosophy of Science, volume 5, pages 216–241. D. Reidel Publishing Company (1968)

  20. Dickson, M.: Quantum logic is alive \(\wedge\) (it is true \(\vee\) it is false). Philos. Sci. 68(3), S274–S287 (2001)

    Article  MathSciNet  Google Scholar 

  21. Kirkham, R.: Theories of Truth: A Critical Introduction. The MIT Press, Cambridge, Massachusetts (1995)

    Book  Google Scholar 

  22. Horsten, L.: The Tarskian Turn: Deflationism and Axiomatic truth. MIT Press, Cambridge, Massachusetts (2011)

    Book  Google Scholar 

  23. Priest, G.: Semantic closure. Studia Logica 43, 117–129 (1984)

    Article  MathSciNet  Google Scholar 

  24. Edwards, D.: The mathematical foundations of quantum mechanics. Synthese 42(1), 1–70 (1979)

    Article  MathSciNet  Google Scholar 

  25. Hodges, W. Tarski’s Truth Definitions. In Edward Zalta, editor, The Stanford Encyclopedia of Philosophy. https://plato.stanford.edu/archives/fall2018/entries/tarski-truth/ (2018)

  26. Speaks, J.: Theories of meaning. In: Edward Zalta, editor, The Stanford Encyclopedia of Philosophy. https://plato.stanford.edu/archives/spr2021/entries/meaning/ (2021)

  27. Mirsky, L.: An Introduction to Linear Algebra. Dover Publications, Mineola (2011)

    MATH  Google Scholar 

  28. Dever, J.: Semantic value. In: K. Brown, editor, Encyclopedia of Language & Linguistics. Reference Work (Second Edition), pp. 137–142. Elsevier Science (2006)

  29. Piron, C.: Foundations of Quantum Physics. Benjamin Inc, W. A (1976)

    MATH  Google Scholar 

  30. Arnold, V.: Mathematical Methods of Classical Mechanics. Springer, New York (1989)

    Book  Google Scholar 

  31. Halmos, P., Givant, S.: Introduction to Boolean Algebras. Springer, New York (2009)

    Book  Google Scholar 

  32. Murawski, R.: Undefinability vs Definability of Satisfaction and Truth. In: Wolenski, J., Köhler, E. (eds.) Alfred Tarski and the Vienna Circle Austro-Polish Connections in Logical Empiricism, pp. 203–215. Springer, New York (1999)

    Chapter  Google Scholar 

  33. Klein, U.: What is the limit \(\hbar {\rightarrow }0\) of quantum theory? Am. J. Phys. 80, 1009–1016 (2012)

    Article  ADS  Google Scholar 

  34. Ralph, G.T.: Zermelo, reductionism, and the philosophy of mathematics. Notre Dame J. Form. Logic 34(4), 539–563 (1993)

    MathSciNet  MATH  Google Scholar 

  35. Tegmark, M., Wheeler, J.A.: 100 Years of the quantum. Sci. Am. 284, 68–75 (2001)

    Article  Google Scholar 

  36. Landsman, N.: Between classical and quantum. In: Butterfield, J., Earman, J. (eds.) Handbook of the Philosophy of Science; Philosophy of Physics, Part A, vol. 2, pp. 417–553. Elsevier, Horth-Holland (2007)

    Google Scholar 

  37. Gerard ’t Hooft: Fast Vacuum Fluctuations and the Emergence of Quantum Mechanics. Foundations of Physics 51(63), (2021)

  38. Karel, H., Thomas, J.: Introduction to Set Theory. Revised and Expanded, 3rd edn. CRC Press, Boca Raton (1999)

    MATH  Google Scholar 

  39. Baratella, S., Ferro, R.: A theory of sets with the negation of the axiom of infinity. Math. Logic Quart. 39, 338–352 (1993)

    Article  MathSciNet  Google Scholar 

  40. Suppes, P.: Finitism in geometry. Erkenntnis 54, 133–144 (2001)

    Article  MathSciNet  Google Scholar 

  41. Bendegem, Van, Paul, Jean: Finitism in Geometry. In Edward N. Zalta, editor, The Stanford Encyclopedia of Philosophy. https://plato.stanford.edu/archives/fall2020/entries/geometry-finitism (2020)

  42. Feferman, S.: Does mathematics need new axioms? American Mathematical Monthly 106, 99–111 (1999)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The author wishes to thank the anonymous referee for the productive comments and interesting remarks that helped offset shortcomings of a draft of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arkady Bolotin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bolotin, A. The Paradox of Classical Reasoning. Found Phys 52, 87 (2022). https://doi.org/10.1007/s10701-022-00604-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10701-022-00604-7

Keywords

Navigation