Skip to main content
Log in

Complex-Valued Classical Behavior from the Correspondence Limit of Quantum Mechanics with Two Boundary Conditions

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

The two-state-vector formalism presents a time-symmetric approach to the standard quantum mechanics, with particular importance in the description of experiments having pre- and post-selected ensembles. In this paper, using the correspondence limit of the quantum harmonic oscillator in the two-state-vector formalism, we produce harmonic oscillators that possess a classical behavior while having a complex-valued position and momentum. This allows us to discover novel effects that cannot be achieved otherwise. The proposed classical behavior does not describe the classical physics in the usual sense since this behavior is subjected to the feature that only after the final measurement is performed, as a boundary condition, the complex-valued classical effects occur between the initial and the final boundary conditions. This classical behavior breaks down if one does not follow the decided boundary conditions during the experiment, since otherwise, one will contradict the impossibility of retrocausality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Aharonov, Y., Albert, D.Z., Vaidman, L.: How the result of a measurement of a component of the spin of a spin-1/2 particle can turn out to be 100. Phys. Rev. Lett. 60, 1351 (1988)

    Article  ADS  Google Scholar 

  2. Brunner, N., Acín, A., Collins, D., Gisin, N., Scarani, V.: Optical telecom networks as weak quantum measurements with postselection. Phys. Rev. Lett. 91, 180402 (2003)

    Article  ADS  Google Scholar 

  3. Dixon, P.B., Starling, D.J., Jordan, A.N., Howell, J.C.: Ultrasensitive beam deflection measurement via interferometric weak value amplification. Phys. Rev. Lett. 102, 173601 (2009)

    Article  ADS  Google Scholar 

  4. Aharonov, Y., Vaidman, L.: Properties of a quantum system during the time interval between two measurements. Phys. Rev. A 41, 11 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  5. Pryde, G.J., O’Brien, J.L., White, A.G., Ralph, T.C., Wiseman, H.M.: Measurement of quantum weak values of photon polarization. Phys. Rev. Lett. 94, 220405 (2005)

    Article  ADS  Google Scholar 

  6. Aharonov, Y., Vaidman, L.: The two-state vector formalism: an updated review. In time in quantum mechanics, pp. 399–447. Springer, Berlin (2008)

    Google Scholar 

  7. Dressel, J., Jordan, A.N.: Significance of the imaginary part of the weak value. Phys. Rev. A 85(1), 012107 (2012)

    Article  ADS  Google Scholar 

  8. Shikano, Y., Hosoya, A.: Weak values with decoherence. J. Phys. A Math. Theor. 43, 025304 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  9. Kim, Y.S., Lee, J.C., Kwon, O., Kim, Y.H.: Protecting entanglement from decoherence using weak measurement and quantum measurement reversal. Nat. Phys. 8, 117–120 (2012)

    Article  Google Scholar 

  10. Puentes, G., Hermosa, N., Torres, J.P.: Weak measurements with orbital-angular-momentum pointer states. Phys. Rev. Lett. 109, 040401 (2012)

    Article  ADS  Google Scholar 

  11. Flack, R., & Hiley, B.J.: Weak values of momentum of the electromagnetic field: average momentum flow lines, not photon trajectories. Preprint at http://arxiv.org/abs/1611.06510 (2016)

  12. Aharonov, Y., Colombo, F., Popescu, S., Sabadini, I., Struppa, D.C., Tollaksen, J.: Quantum violation of the pigeonhole principle and the nature of quantum correlations. Proc. Natl. Acad. Sci. 113, 532–535 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  13. Pusey, M.F.: Anomalous weak values are proofs of contextuality. Phys. Rev. Lett. 113, 200401 (2014)

    Article  ADS  Google Scholar 

  14. Pan, Y., Zhang, J., Cohen, E., Wu, C.W., Chen, P.X., Davidson, N.: Weak-to-strong transition of quantum measurement in a trapped-ion system. Nat. Phys. 16, 1206–1210 (2020)

    Article  Google Scholar 

  15. Acosta, V.M.: Strength of weak measurements. Nat. Phys. 10, 187–188 (2014)

    Article  Google Scholar 

  16. Bender, C.M., Chen, J.H., Darg, D.W., Milton, K.A.: Classical trajectories for complex Hamiltonians. J. Phys. A Math. Gen. 39, 4219 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  17. Bender, C.M., Holm, D.D., Hook, D.W.: Complex trajectories of a simple pendulum. J. Phys. A Math. Theor. 40, F81 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  18. Mugnai, D., Ranfagni, A.: Complex classical trajectories in tunnelling: how instanton bounces can become real processes. Il Nuovo Cimento D 14, 541–551 (1992)

    Article  ADS  Google Scholar 

  19. Bender, C.M., Hook, D.W., Meisinger, P.N., Wang, Q.H.: Complex correspondence principle. Phys. Rev. Lett. 104, 061601 (2010)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomer Shushi.

Ethics declarations

Conflict of interest

The authors have no conflict of interest to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aharonov, Y., Shushi, T. Complex-Valued Classical Behavior from the Correspondence Limit of Quantum Mechanics with Two Boundary Conditions. Found Phys 52, 56 (2022). https://doi.org/10.1007/s10701-022-00576-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10701-022-00576-8

Keywords

Navigation