Skip to main content
Log in

From Bohm’s Vision of Quantum Processes to Quantum Field Theory ... to the Transactional Approach. Variations on the Theme

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

The vision of quantum physics developed by David Bohm, and especially the idea of the implicit order, can be considered the true epistemological foundation of quantum field theory and the idea of a quantum vacuum that underlies the observable forms of matter, energy and space-time. Assuming the non-locality as the crucial visiting card of quantum processes, it is thus possible to arrive directly to the transactional interpretation and to the idea of a non-local quantum vacuum in which the behaviour of a subatomic particle constitutes the manifestation of more elementary creation/annihilation processes of quanta.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fiscaletti, D.: Il quadro olografico. Le frontiere non-locali della fisica moderna. Di Renzo Editore, Roma (2017)

  2. Licata, I.: Osservando la Sfinge. La realtà virtuale della fisica quantistica. Di Renzo Editore, Roma (2009)

  3. Bell, J.S.: Dicibile e indicibile in meccanica quantistica, Adelphi, Milano (2010)

  4. Licata, I.: I gatti di Wiener. Riflessioni sistemiche sulla complessità, Bonanno Editrice, Acireale-Roma (2015)

  5. Bohm, D.: A new suggested interpretation of quantum theory in terms of hidden variables. Part I. Phys. Rev. 85, 166–179 (1952)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  6. Bohm, D.: A new suggested interpretation of quantum theory in terms of hidden variables. Part II. Phys. Rev. 85, 180–193 (1952)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  7. Licata, I., Fiscaletti, D.: Quantum Potential. Physics, Geometry and Algebra. Springer, Heidelberg (2013)

  8. Hiley, B.: Some remarks on the evolution of Bohm’ proposals for an alternative to standard quantum mechanics. www.bbk.ac.uk/tpru/BasilHiley/History_of_Bohm_s_QT.pdf (2010)

  9. Dürr, D., Goldstein, S., Zanghì, N.: Quantum equilibrium and the origin of absolute uncertainty. J. Stat. Phys. 67, 843–907 (1992)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  10. Bohm, D.: Quantum Theory. Routledge, London (1951)

    MATH  Google Scholar 

  11. Holland, P.R.: The Quantum Theory of Motion: An Account of the De Broglie-Bohm Causal Interpretation of Quantum Mechanics. Cambridge University Press, Cambridge (1993)

    Book  Google Scholar 

  12. Vitiello, G.: Classical trajectories and quantum field theory. Braz. J. Phys. 35(2), 351–358 (2005)

    Article  ADS  Google Scholar 

  13. icata, I.: Emergence and computation at the edge of classical and quantum systems. In: Licata, I., Sakaji, A. (eds)Physics of Emergence and Organization. World Scientific, Singapore (2008)

  14. Wheeler, J.A.: Information, physics, quantum: The search for links. In: Zurek, W. (ed) Complexity, Entropy, and the Physics of Information, Addison-Wesley, Redwood City (1990)

  15. Bohm, D.: Wholeness and the Implicate Order. Routledge, London (1980)

    Google Scholar 

  16. Hiley, B.J.: Non-commutative geometry, the Bohm interpretation and the mind-matter relationship. In: Proc. CASYS’2000, Liege, Belgium, Aug. 7-12 (2000)

  17. B.J. Hiley and M. Fernandes, “Process and time”, in Time, Temporality, and Now, eds. H. Atmanspacher and E. Ruhnau, Springer-Verlag, Berlin, pp. 365-382 (1997).

  18. Hiley, B.J.: Non-commutative quantum geometry: a reappraisal of the Bohm approach to quantum theory. In: Elitzur, A., Dolev, S., Kolenda, N. (eds) Quo vadis quantum mechanics?, pp. 306–324. Springer, Berlino (2005)

  19. Hiley, B.J.: Process, distinction, groupoids and clifford algebras: an alternative view of the quantum formalism. In: Coecke, B. (ed.) New Structures for Physics. Springer, Berlin (2009)

  20. Hiley, B.J.: The Clifford algebra approach to quantum mechanics A: the Schrödinger and Pauli particles. arXiv:1011.4031 [math-ph] (2010)

  21. Takabayashi, T.: Relativistic hydrodynamics of the Dirac matter. Suppl. Prog. Theor. Phys. 4, 1–80 (1957)

    ADS  Google Scholar 

  22. Hiley, B.J., Dennis, G.: Dirac, Bohm and the algebraic approach. arXiv:1901.01979v1 [quant-ph] (2019)

  23. Aharonov, Y., Bohm, D.: Significance of electromagnetic potentials in the quantum theory. Phys. Rev. 115/3, 485 (1959)

  24. Vaidman, L.: Role of potentials in the Aharonov-Bohm effect. Phys. Rev. A 86, 040101(R) (2012)

    Article  ADS  Google Scholar 

  25. Vaidman, L.: Paradoxes of the Aharonov-Bohm and Aharonov-Casher effects. In: Struppa, D.C., Tollaksen, J.M. (eds.) Quantum Theory: A Two-Time Success Story, pp. 247–255. Springer, Yakir Aharonov Festschrift, Milan (2013)

    Google Scholar 

  26. Kang, K.: Locality of the Aharonov-Bohm-Casher effect. Phys. Rev. A 91, 052116 (2015)

    Article  ADS  Google Scholar 

  27. Aharonov, Y., Cohen, E., Rohrlich, D.: Non-locality of the Aharonov-Bohm effect. Phys. Rev. A 93, 42110 (2016)

  28. Bhattacharya, K.: Demystifying the nonlocality problem in Aharonov-Bohm effect. Phys. Scripta 96, 084011 (2021)

  29. Tortora, C.: Quale realtà? La visione del mondo nella fisica quantistica, Aracne Editrice, Roma (2015)

  30. Reported in Quanta and Reality, Stephen Toulmin editor, Hutchinson, London (1971)

  31. Schwinger, J.: The Theory of Quantized Fields III. Phys. Rev. 91, 728–740 (1953)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  32. Schwinger, J.: The theory of quantized fields I. Phys. Rev. 82, 914–927 (1951)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  33. Feynman, R.P.: Space-time approach to non-relativistic quantum mechanics. Rev. Mod. Phys. 20, 367–387 (1948)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  34. Wilczek, F.: Mass without mass I: most of matter. Phys. Today 52(11), 11–13 (1999)

    Article  ADS  Google Scholar 

  35. Weinberg, S.: Facing Up: Science and Its Cultural Adversaries. Harvard University Press, Cambridge (2001)

    Book  MATH  Google Scholar 

  36. Pessa, E.: The concept of particle in quantum field theory. In: Vision Of Oneness. A Journey in Matter, a cura di I. Licata e A. Sakaji, Aracne, Roma (2011)

  37. Licata, I.: Vision of oneness. Space-time geometry and quantum physics. In: Vision of Oneness. A Journey in Matter, a cura di I. Licata. E A. Sakaji, Aracne, Roma (2011)

  38. Tommasi, R.: Milestones in Physics. Aracne Editrice, Roma (2013)

  39. Milonni, P.W.: The Quantum Vacuum: An Introduction to Quantum Electrodynamics. Academic Press, New York (1994)

    Book  Google Scholar 

  40. Bush, J.W.M.: Pilot-wave hydrodynamics. Ann. Rev. Fluid Mech. 47(1), 269–292 (2015)

    Article  MathSciNet  ADS  Google Scholar 

  41. Weatherall, J.O.: La fisica del nulla. La strana storia dello spazio vuoto, Bollati-Boringhieri, Torino (2017)

  42. Bennett, C.L.: Precausal quantum mechanics. Phys. Rev. A 36(9), 4139–4148 (1987)

    Article  MathSciNet  ADS  Google Scholar 

  43. Jaynes, E.T.: Probability in quantum theory. In: Zurek, W.H. (ed.) Complexity, Entropy and the Physics of Information (Proceedings Volume). Addison-Wesley Publishing Co., Reading (1990)

  44. Del Giudice, E.: Una via quantistica alla teoria dei sistemi. In: Strutture del mondo. Il pensiero sistemico come specchio di una realtà complessa, L. Ulivi ed., Il Mulino, Bologna (2010)

  45. Preparata, G.: An Introduction to a Realistic Quantum Physics. World Scientific, Singapore (2002)

    Book  MATH  Google Scholar 

  46. Preparata, G.: L’architettura dell’universo. Bibliopolis, Napoli (2001)

    Google Scholar 

  47. Cini, M.: Field quantization and wave-particle duality. Ann. Phys. 305, 83–95 (2003)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  48. Fiscaletti, D.: I gatti di Schrödinger. Editori Riuniti University Press, Roma (2015)

    Google Scholar 

  49. Licata, I.: Transaction and non-locality in quantum field theory. Eur. Phys. J. Web Conf. 70, 00039 (2014)

    Article  Google Scholar 

  50. Cramer, J.G.: Generalized absorber theory and the Einstein–Podolsky–Rosen paradox. Phys. Rev. D 22(2), 362–376 (1980)

    Article  MathSciNet  ADS  Google Scholar 

  51. Cramer, J.G.: The arrow of electromagnetic time and the generalized absorber theory. Found. Phys. 13(9), 887–902 (1983)

    Article  ADS  Google Scholar 

  52. Cramer, J.G.: The transactional interpretation of quantum mechanics. Rev. Mod. Phys. 58, 647–688 (1986)

    Article  MathSciNet  ADS  Google Scholar 

  53. Cramer, J.G.: An overview of the transactional interpretation. Int. J. Theor. Phys. 27(2), 227–236 (1988)

    Article  MathSciNet  Google Scholar 

  54. Kastner, R.E.: de Broglie waves as the ‘bridge of becoming’ between quantum theory and relativity. Found. Sci. (2011). https://doi.org/10.1007/s10699-011-9273-4

    Article  Google Scholar 

  55. Kastner, R.E.: On delayed choice and contingent absorber experiments. ISRN Math. Phys. 2012, Article ID 617291 (2012). https://doi.org/10.5402/2012/617291

  56. Kastner, R.E.: The broken symmetry of time. AIP Conf. Proc. 1408, 7–21 (2011). https://doi.org/10.1063/1.3663714

    Article  ADS  Google Scholar 

  57. Kastner, R.E.: The New Transactional Interpretation of Quantum Theory: The Reality of Possibility. Cambridge University Press, Cambridge (2012)

    Book  Google Scholar 

  58. Kastner, R.E., Cramer, J.: Quantifying absorption in the transactional interpretation. Int. J. Quantum Found. 4, 210–222 (2018)

    Google Scholar 

  59. Kastner, R.E.: On the status of the measurement problem: recalling the relativistic transactional interpretation. Int. J. Quantum Found. 4, 128–141 (2018)

    Google Scholar 

  60. Kastner, R.E.: Decoherence and the transactional interpretation. Int. J. Quantum Found. 6, 24–39 (2020)

    Google Scholar 

  61. Chiatti, L.: The transaction as a quantum concept. arXiv.org/pdf/1204.6636 (2012)

  62. Chiatti, L., Licata, I.: Fluidodynamical representation and quantum jumps. Quantum Struct. Stud. (2016)

  63. Licata, I., Chiatti, L.: The archaic universe: big bang, cosmological term and the quantum origin of time in projective cosmology. Int. J. Theor. Phys. 48(4), 1003–1018 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  64. Licata, I., Chiatti, L.: Archaic universe and cosmological model: 'big-bang' as nucleation by vacuum. Int. J. Theor. Phys. 49, 2379–2402 (2010)

  65. Licata, I.: Logical openness in cognitive models. Epistemologia XXXI, 177–192 (2008)

  66. Rueda, A., Haisch, B.: Gravity and the quantum vacuum inertia hypothesis. Annalen der Physik 14, 479–498 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  67. Puthoff, H.E.: Polarizable-vacuum (PV) approach to general relativity. Found. Phys. 32(6), 927–943 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  68. Haisch, B., Rueda, A., Puthoff, H.E.: Physics of the zero-point field: implications for inertia, gravitation and mass. Spec. Sci. Technol. 20, 99–114 (1997)

    Google Scholar 

  69. Santos, E.: Quantum vacuum fluctuations and dark energy. arXiv:0812.4121v2 [gr-qc] (2009)

  70. Santos, E.: Space-time curvature induced by quantum vacuum fluctuations as an alternative to dark energy. Int. J. Theor. Phys. 50(7), 2125–2133 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  71. Santos, E.: Dark energy as a curvature of space-time induced by quantum vacuum fluctuations. arXiv:1006.5543 (2010)

  72. Santos, E.: Dark matter as an effect of the quantum vacuum. arXiv:1711.01926v2 [physics-gen-ph] (2018)

  73. Hajdukovic, D.S.: Is dark matter an illusion created by the gravitational polarization of the quantum vacuum? Astrophys. Space Sci. 334, 215–218 (2011). https://doi.org/10.1007/s10509-011-0744-4

    Article  MATH  ADS  Google Scholar 

  74. Consoli, M.: Do potentials require massless particles? Phys. Rev. Lett. B 672(3), 270–274 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  75. Consoli, M.: On the low-energy spectrum of spontaneously broken phi4 theories. Mod. Phys. Lett. 26, 531–554 (2011)

  76. Consoli, M.: Vision of oneness. In: Licata, I., Sakaji, A. (eds.) The Vacuum Condensates: A Bridge Between Particle Physics to Gravity. Aracne Editrice, Rome (2011)

  77. Consoli, M., Matheson, C., Pluchino, A.: “The classical ether-drift experiments: a modern re-interpretation. Eur. Phys. J. Plus 128, 71 (2013)

    Article  Google Scholar 

  78. Sbitnev, V.: Navier-Stokes equation describes the movement of a special superfluid medium. arXiv:1504.07497v1 [quant-ph] (2015)

  79. Sbitnev, V.: Selected topics in applications of quantum mechanics. In: Pahlavani, M.R. (ed.) Physical Vacuum is a Special Superfluid Medium, pp. 345-373. InTech, Rijeka (2015)

  80. Sbitnev, V.: Hydrodynamics of the physical vacuum: dark matter is an illusion. Mod. Phys. Lett. A 30, 1550184 (2015)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  81. Sbitnev, V.: Hydrodynamics of the physical vacuum. I: Scalar quantum sector. Found. Phys. 46(5), 606–619 (2016)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  82. Sbitnev, V.: Dark matter is a manifestation of the vacuum Bose-Einstein condensate. arXiv:1601:04536v2 [physics.gen-ph] (2016)

  83. Licata, I., Chiatti, L.: Timeless approach to quantum jumps. Quanta 4, 10–26 (2015)

    Article  Google Scholar 

  84. Chiatti, L., Licata, I.: Particle model from quantum foundations. Quantum Stud. (2016)

  85. Fiscaletti, D., Sorli, A.: Space-time curvature of general relativity and energy density of a three-dimensional quantum vacuum. Annales UMCS Sectio AAA: Physica LXIX, 55–81 (2014)

  86. Fiscaletti, D., Sorli, A.: Perspectives about quantum mechanics in a model of a three-dimensional quantum vacuum where time is a mathematical dimension. SOP Trans. Theor. Phys. 1(3), 11–38 (2014)

    Article  Google Scholar 

  87. Fiscaletti, D., Sorli, A.: About a three-dimensional quantum vacuum as the ultimate origin of gravity, electromagnetic field, dark energy … and quantum behaviour. Ukr. J. Phys. 61(5), 413–431 (2016)

    Article  Google Scholar 

  88. Fiscaletti, D., Sorli, A.: Dynamic quantum vacuum and relativity. Annales UMCS Sectio AAA: Physica LXXI, 11–52 (2016)

  89. Fiscaletti, D.: The timeless approach. Frontier Perspectives in 21th century physics, World Scientific, Singapore (2015)

  90. Fiscaletti, D.: About dark matter as an emerging entity from elementary energy density fluctuations of a three-dimensional quantum vacuum. J. Theor. Appl. Phys. 14, 203–222 (2020)

    Article  ADS  Google Scholar 

  91. www.lescienze.it/news/2018/10/13/news/famoso_esperimento_alternativa_stranezza_quantistica-4152761/ (2018); Andersen et al., 2015.

  92. Pinto-Neto, N., Struyve, W.: Bohmian quantum gravity and cosmology. arXiv:1801.03353v2 [gr-qc] (2019)

  93. Pinto-Neto, N.: The de Broglie-Bohm quantum theory and its application to quantum cosmology. Universe 7, 134 (2021)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Davide Fiscaletti.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fiscaletti, D. From Bohm’s Vision of Quantum Processes to Quantum Field Theory ... to the Transactional Approach. Variations on the Theme. Found Phys 52, 51 (2022). https://doi.org/10.1007/s10701-022-00569-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10701-022-00569-7

Keywords

Navigation