Skip to main content
Log in

Negations and Meets in Topos Quantum Theory

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

The daseinisation is a mapping from an orthomodular lattice in ordinary quantum theory into a Heyting algebra in topos quantum theory. While distributivity does not always hold in orthomodular lattices, it does in Heyting algebras. We investigate the conditions under which negations and meets are preserved by daseinisation, and the condition that any element in the Heyting algebra transformed through daseinisation corresponds to an element in the original orthomodular lattice. We show that these conditions are equivalent, and that, not only in the case of non-distributive orthomodular lattices but also in the case of Boolean algebras containing more than four elements, the Heyting algebra transformed from the orthomodular lattice through daseinisation will contain an element that does not correspond to any element of the original orthomodular lattice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Birkhoff, G., von Neumann, J.: The logic of quantum mechanics. Ann. Math. 37(4), 823–843 (1936)

    Article  MathSciNet  Google Scholar 

  2. Borceux, F.: Handbook of Categorical Algebra, vol. 1, Basic Category Theory. Cambridge University Press, Cambridge (1994)

  3. Butterfield, J., Isham, C.J.: A topos perspective on the Kochen–Specker theorem II. Conceptual aspects and classical analogues. Int. J. Theor. Phys. 38(3), 827–859 (1999)

    Article  MathSciNet  Google Scholar 

  4. Butterfield, J., Isham, C.J.: Topos perspective on the Kochen–Specker theorem: IV. interval valuations. Int. J. Theor. Phys. 41(4), 613–639 (2002)

    Article  MathSciNet  Google Scholar 

  5. Cannon, S., Döring, A.: A generalisation of Stone duality to orthomodular lattices. In: Reality and Measurement in Algebraic Quantum Theory, pp. 3–65. Springer, Berlin (2015)

  6. Döring, A.: Topos-based logic for quantum systems and bi-Heyting algebras. In: Logic and Algebraic Structures in Quantum Computing, vol. 45, pp. 151–173. Cambridge University Press, Cambridge (2016)

  7. Döring, A., Isham, C.: What is a thing?: Topos theory in the foundations of physics. In: New Structures for Physics, pp. 753–937. Springer, Berlin (2010)

  8. Döring, A., Isham, C.J.: A topos foundation for theories of physics: I. Formal languages for physics. J. Math. Phys. 49(5), 053515 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  9. Döring, A., Isham, C.J.: A topos foundation for theories of physics: II. Daseinisation and the liberation of quantum theory. J. Math. Phys. 49(5), 053516 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  10. Döring, A., Isham, C.J.: A topos foundation for theories of physics: III. The representation of physical quantities with arrows. J. Math. Phys. 49(5), 053517 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  11. Döring, A., Isham, C.J.: A topos foundation for theories of physics: IV. Categories of systems. J. Math. Phys. 49(5), 053518 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  12. Döring, A., Eva, B., Ozawa, M.: A bridge between Q-worlds (2018). arXiv:1812.08604 [quant-ph]

  13. Eva, B.: Topos theoretic quantum realism. Br. J. Philos. Sci. 68(4), 1149–1181 (2017)

    Article  MathSciNet  Google Scholar 

  14. Hamilton, J., Isham, C.J., Butterfield, J.: Topos perspective on the Kochen–Specker theorem: III. von Neumann algebras as the base category. Int. J. Theor. Phys. 39(6), 1413–1436 (2000)

    Article  MathSciNet  Google Scholar 

  15. Heunen, C., Landsman, N.P., Spitters, B.: A topos for algebraic quantum theory. Commun. Math. Phys. 291(1), 63–110 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  16. Heunen, C., Landsman, N.P., Spitters, B.: Bohrification. In: Deep Beauty: Understanding the Quantum World through Mathematical Innovation, pp. 271–313. Cambridge University Press, Cambridge (2011)

  17. Heunen, C., Landsman, N.P., Spitters, B.: Bohrification of operator algebras and quantum logic. Synthese 186(3), 719–752 (2012)

    Article  MathSciNet  Google Scholar 

  18. Isham, C.J., Butterfield, J.: Topos perspective on the Kochen–Specker theorem: I. Quantum states as generalized valuations. Int. J. Theor. Phys. 37(11), 2669–2733 (1998)

    Article  MathSciNet  Google Scholar 

  19. Kalmbach, G.: Orthomodular Lattices. Academic Press, London (1983)

    MATH  Google Scholar 

  20. Kitajima, Y.: Interpretations of quantum mechanics in terms of beable algebras. Int. J. Theor. Phys. 44(8), 1141–1156 (2005)

    Article  MathSciNet  Google Scholar 

  21. MacLane, S., Moerdijk, I.: Sheaves in Geometry and Logic: A First Introduction to Topos Theory. Springer, Berlin (1994)

    Book  Google Scholar 

  22. Rédei, M.: Quantum Logic in Algebraic Approach. Springer, Dordrecht (1998)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuichiro Kitajima.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The author is supported by the JSPS KAKENHI No. 20K00279.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kitajima, Y. Negations and Meets in Topos Quantum Theory. Found Phys 52, 12 (2022). https://doi.org/10.1007/s10701-021-00529-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10701-021-00529-7

Keywords

Navigation