Skip to main content
Log in

An Abstract Theory of Physical Measurements

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

The question of what should be meant by a measurement is tackled from a mathematical perspective whose physical interpretation is that a measurement is a fundamental process via which a finite amount of classical information is produced. This translates into an algebraic and topological definition of measurement space that caters for the distinction between quantum and classical measurements and allows a notion of observer to be derived.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abramsky, S., Vickers, S.: Quantales, observational logic and process semantics. Math. Struct. Comput. Sci. 3(2), 161–227 (1993)

    Article  MathSciNet  Google Scholar 

  2. Araki, H.: Mathematical theory of quantum fields, International Series of Monographs on Physics, 101, Translated from the 1993 Japanese original by Ursula Carow-Watamura; Reprint of the 1999 edition, Oxford University Press, Oxford, xii+236 (2009)

  3. Armstrong, A., Clark, L.O., an Huef, Jones, M., Lin, J.-F.: Filtering germs: groupoids associated to inverse semigroups. Expositiones Mathematicae (2021). https://doi.org/10.1016/j.exmath.2021.07.001

  4. Bassi, A., Ghirardi, G.: Dynamical reduction models. Phys. Rep. 379(5–6), 257–426 (2003). https://doi.org/10.1016/S0370-1573(03)00103-0

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Batelaan, H., Gay, T.J., Schwendiman, J.J.: Stern-Gerlach effect for electron beams. Phys. Rev. Lett. 79(23), 4517–4521 (1997)

    Article  ADS  Google Scholar 

  6. Bell, J.: Against ‘measurement’. Phys. World 3(8), 33–40 (1990)

    Article  Google Scholar 

  7. Bohm, D.: A suggested interpretation of the quantum theory in terms of “hidden’’ variables. I and II. Phys. Rev. 2(85), 166–193 (1952)

    Article  ADS  MathSciNet  Google Scholar 

  8. Bombelli, L., Lee, J., Meyer, D., Sorkin, R.D.: Space-time as a causal set. Phys. Rev. Lett. 59(5), 521–524 (1987). https://doi.org/10.1103/PhysRevLett.59.521

    Article  ADS  MathSciNet  Google Scholar 

  9. Ciaglia, F.M., Ibort, A., Marmo, G.: A gentle introduction to Schwinger’s formulation of quantum mechanics: the groupoid picture. Modern Phys. Lett. A 33, 1850122 (2018). https://doi.org/10.1142/S0217732318501225

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Ciaglia, F.M., Ibort, A., Marmo, G.: Schwinger’s picture of quantum mechanics. I, II, III, Int. J. Geom. Methods Mod. Phys. 16, 1950119 31, 1950136 32, 1950165 37 (2019)

  11. Christensen, J.D., Crane, L.: Causal sites as quantum geometry. J. Math. Phys. 46(12), 122502 (2005). https://doi.org/10.1063/1.2138043

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. de Silva, N., Barbosa, R.S.: Contextuality and noncommutative geometry in quantum mechanics. Commun. Math. Phys. 365(2), 375–429 (2019). https://doi.org/10.1007/s00220-018-3222-9

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. DeWitt, B.S.: Quantum mechanics and reality. Phys. Today 23(9), 30–35 (1970). https://doi.org/10.1063/1.3022331

    Article  Google Scholar 

  14. Döring, A., Isham, C.J.: A topos foundation for theories of physics. I, II, III, IV, J. Math. Phys. 49 (2008), 053515 1–25, 053516 1–26, 053517 1–31, 053518 1–29

  15. Durham, I.T.: An order-theoretic quantification of contextuality. Information 5, 508–525 (2014). https://doi.org/10.3390/info5030508

    Article  Google Scholar 

  16. Everett, H., III.: “Relative state’’ formulation of quantum mechanics. Rev. Mod. Phys. 29, 454–462 (1957). https://doi.org/10.1103/revmodphys.29.454

    Article  ADS  MathSciNet  Google Scholar 

  17. Ghirardi, G.C., Pearle, P., Rimini, A.: Markov processes in Hilbert space and continuous spontaneous localization of systems of identical particles. Phys. Rev. A (3) 42(1), 78–89 (1990). https://doi.org/10.1103/PhysRevA.42.78

    Article  ADS  MathSciNet  Google Scholar 

  18. Gierz, G., Hofmann, K.H., Keimel, K., Lawson, J.D., Mislove, M., Scott, D.S.: Continuous lattices and domains, Encyclopedia of Mathematics and Its Applications, 93, Cambridge University Press, Cambridge (2003), xxxvi+591

  19. Heunen, C., Landsman, N.P., Spitters, B.: A topos for algebraic quantum theory. Commun. Math. Phys. 291(1), 63–110 (2009). https://doi.org/10.1007/s00220-009-0865-6

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Johnstone, P.T.: The point of pointless topology. Bull. Am. Math. Soc. (N.S.) 8(1), 41–53 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  21. Joos, E., Zeh, H.D., Kiefer, C., Giulini, D., Kupsch, J., Stamatescu, I.-O.: Decoherence and the appearance of a classical world in quantum theory, 2, Springer, Berlin (2003), xii+496, https://doi.org/10.1007/978-3-662-05328-7

  22. Landsman, K.: Foundations of quantum theory, Fundamental Theories of Physics, 188, From classical concepts to operator algebras, Springer, Cham (2017), xv+881, https://doi.org/10.1007/978-3-319-51777-3

  23. Mulvey, C.J.: Second topology conference (Taormina, 1984). Rend. Circ. Mat. Palermo 2 12, 99–104 (1986)

    Google Scholar 

  24. Mulvey, C.J.: Quantales, Invited talk at the Summer Conference on Locales and Topological Groups (Curaçao, 1989)

  25. Mulvey, C.J., Pelletier, J.W.: On the quantisation of points. J. Pure Appl. Algebra 159(2–3), 231–295 (2001)

    Article  MathSciNet  Google Scholar 

  26. Penrose, R.: On the gravitization of quantum mechanics 1: quantum state reduction. Found. Phys. 44(5), 557–575 (2014). https://doi.org/10.1007/s10701-013-9770-0

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. Resende, P.: Quantales, finite observations and strong bisimulation. Theoret. Comput. Sci. 254(1–2), 95–149 (2001)

    Article  MathSciNet  Google Scholar 

  28. Resende, P.: Étale groupoids and their quantales. Adv. Math. 208(1), 147–209 (2007)

    Article  MathSciNet  Google Scholar 

  29. Resende, P.: Groupoid sheaves as quantale sheaves. J. Pure Appl. Algebra 216(1), 41–70 (2012). https://doi.org/10.1016/j.jpaa.2011.05.002

    Article  MathSciNet  MATH  Google Scholar 

  30. Resende, P.: Quantales and Fell bundles. Adv. Math. 325, 312–374 (2018). https://doi.org/10.1016/j.aim.2017.12.001

    Article  MathSciNet  MATH  Google Scholar 

  31. Resende, P.: The many groupoids of a stably Gelfand quantale. J. Algebra 498, 197–210 (2018). https://doi.org/10.1016/j.jalgebra.2017.11.042

    Article  MathSciNet  MATH  Google Scholar 

  32. Resende, P.: On the geometry of physical measurements: topological and algebraic aspects. arXiv:2005.00933v3 (2021)

  33. Resende, P., Santos, J.P.: Linear structures on locales. Theory Appl. Categ. 31, (2016), Paper No. 20, 502–541. http://www.tac.mta.ca/tac/volumes/31/20/31-20.pdf

  34. Rosenthal, K.I.: Quantales and Their Applications, Pitman Research Notes in Mathematics Series, 234, Longman Scientific & Technical, Harlow, x+165 (1990)

  35. Rovelli, C.: Relational quantum mechanics. Int. J. Theoret. Phys. 35(8), 1637–1678 (1996). https://doi.org/10.1007/BF02302261

    Article  MathSciNet  MATH  Google Scholar 

  36. Schwinger, J.: The algebra of microscopic measurement. Proc. Natl. Acad. Sci. USA 45, 1542–1553 (1959). https://doi.org/10.1073/pnas.45.10.1542

    Article  ADS  MathSciNet  MATH  Google Scholar 

  37. Smolin, L.: The case for background independence. In: The Structural Foundations of Quantum Gravity, pp. 196–239. Oxford University Press, Oxford (2006). https://doi.org/10.1093/acprof:oso/9780199269693.003.0007

  38. Stoy, J.E.: Denotational semantics: the Scott-Strachey approach to programming language theory, MIT Press Series in Computer Science, 1, Reprint of the 1977 original; With a foreword by Dana S. Scott, MIT Press, Cambridge, Mass.-London, xxx+414 (1981)

  39. Vickers, S.: Topology via logic, Cambridge Tracts in Theoretical Computer Science, 5, Cambridge University Press, Cambridge, xvi+200 (1989)

  40. Vickers, S.: Locales and toposes as spaces. In: Aiello, M., Pratt-Hartmann, I., Van Benthem, J. (eds.) Handbook of Spatial Logics, pp. 429–496. Springer, Dordrecht (2007)

    Chapter  Google Scholar 

  41. Wheeler, J.A.: Assessment of Everett’s “relative state’’ formulation of quantum theory. Rev. Mod. Phys. 29, 463–465 (1957). https://doi.org/10.1103/revmodphys.29.463

    Article  ADS  MathSciNet  Google Scholar 

  42. Wheeler, J.A.: Information, physics, quantum: the search for links, Foundations of quantum mechanics in the light of new technology (Tokyo, 1989). Phys. Soc. Jpn. 354–368 (1990)

  43. Zeh, H.-D.: On the interpretation of measurement in quantum theory. Found. Phys. 1(1), 69–76 (1970)

    Article  ADS  Google Scholar 

  44. Zeh, H.-D.: Towards a quantum theory of observation. Found. Phys. 3(1), 109–116 (1973)

    Article  ADS  Google Scholar 

  45. Zurek, W.H.: Decoherence, einselection, and the quantum origins of the classical. Rev. Modern Phys. 75(3), 715–775 (2003). https://doi.org/10.1103/RevModPhys.75.715

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

Work funded by FCT/Portugal through project UIDB/04459/2020.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pedro Resende.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Resende, P. An Abstract Theory of Physical Measurements. Found Phys 51, 108 (2021). https://doi.org/10.1007/s10701-021-00513-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10701-021-00513-1

Keywords

Navigation