Skip to main content
Log in

Wave-Particle Duality and the Objectiveness of “True” and “False”

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

The traditional analysis of the basic version of the double-slit experiment leads to the conclusion that wave-particle duality is a fundamental fact of nature. However, such a conclusion means to imply that we are not only required to have two contradictory pictures of reality but also compelled to abandon the objectiveness of the truth values, “true” and “false”. Yet, even if we could accept wave-like behavior of quantum particles as the best explanation for the build-up of an interference pattern in the double-slit experiment, without the objectivity of the truth values we would never have certainty regarding any statement about the world. The present paper discusses ways to reconcile the correct description of the double-slit experiment with the objectiveness of “true” and “false”.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Greiner, W., Bromley, D.A.: Quantum Mechanics: An Introduction (Theoretical Physics). Springer, Berlin (2012)

    Google Scholar 

  2. Bohr, N.: The quantum postulate and the recent development of atomic theory. Nat. Suppl. 121, 580–590 (1928)

    MATH  Google Scholar 

  3. Scully, M.O., Englert, B.-G., Walther, H.: Quantum optical tests of complementarity. Nature 351, 111–116 (1991)

    Article  ADS  Google Scholar 

  4. Menzel, R., Puhlmann, D., Heuer, A., Schleich, W.P.: Wave-particle dualism and complementarity unraveled by a different mode. Proc. Natl. Acad. Sci. USA 109(24), 9314–9319 (2012)

    Article  ADS  Google Scholar 

  5. Feynman, R.P., Leighton, R.B., Sands, M.: The Feynman Lectures on Physics, vol. 1. Addison-Wesley, Boston (1963)

    MATH  Google Scholar 

  6. Birkhoff, G., von Neumann, J.: The logic of quantum mechanics. Ann. Math. 37, 823–843 (1936)

    Article  MathSciNet  MATH  Google Scholar 

  7. Baltag, A., Smets, S.: Quantum logic as a dynamic logic. Synthese 179, 285–306 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  8. Mateus, P., Sernadas, A.: Weakly complete axiomatization of exogenous quantum propositional logic. Inf. Comput. 204, 771–794 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  9. Abramsky, S., Duncan, R.: A categorical quantum logic. Math. Struct. Comput. Sci. 16, 469–489 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  10. Pavicic, M.: Bibliography on quantum logics and related structures. Int. J. Theor. Phys. 31, 373–461 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  11. Kochen, S., Specker, E.: Logical structures arising in quantum mechanics. In: G. J\(\ddot{{\rm a}}\)ger, H. L\(\ddot{{\rm a}}\)uchli, B. Scarpellini, and V. Strassen, editors, Ernst Specker Selecta, pp. 210–221. Birkh\(\ddot{{\rm a}}\)user, Basel (1990)

  12. Kochen, S., Ernst, S.: The calculus of partial propositional functions. In: Hooker, C. (ed.) The Logico-Algebraic Approach to Quantum Mechanics: Historical Evolution, vol. 1, pp. 277–292. D. Reidel Publishing Company, Dordrecht (1974)

  13. Kochen, S.: A reconstruction of quantum mechanics. Found. Phys. 45, 557–590 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Church, A.: Introduction to Mathematical Logic. Princeton University Press, Princeton, NJ (1956)

    MATH  Google Scholar 

  15. Mendelson, E.: Introduction to Mathematical Logic. Springer, Berlin (1997)

    MATH  Google Scholar 

  16. Klement, K.C.: Propositional Logic. In The Internet Encyclopedia of Philosophy. https://www.iep.utm.edu/prop-log/ (2020)

  17. Mirsky, L.: An Introduction to Linear Algebra. Dover Books on Mathematics, Dover Publications, New York (2011)

    MATH  Google Scholar 

  18. Sawant, R., Samuel, J., Sinha, A., Sinha, S., Sinha, U.: Non-classical paths in interference experiments. Phys. Rev. Lett. 113(12), 120406 (2014)

    Article  ADS  Google Scholar 

  19. von Neumann, J.: Mathematical Foundations of Quantum Mechanics. Princeton University Press, Princeton (1955)

    MATH  Google Scholar 

  20. Stephen Cole Kleene: On notation for ordinal numbers. J. Symb. Log. 3, 150–155 (1938)

    Article  MATH  Google Scholar 

  21. Priest, G., Sylvan, R.: Simplified semantics for basic relevant logics. J. Philos. Log. 21, 217–232 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  22. Łukasiewicz, J.: On three-valued logic. In: Borkowski, L., Łukasiewicz, J. (eds.) Selected Works, pp. 87–88. North-Holland, Amsterdam (1970)

    MATH  Google Scholar 

  23. Gottwald, S.: A treatise on many valued logics. Press, Res. Stud (2001)

    MATH  Google Scholar 

  24. Reichenbach, H.: Philosophic Foundations of Quantum Mechanics. Dover Publications, New York (2011)

    Google Scholar 

  25. Rey, G.: The analytic/synthetic distinction. In: Zalta, E.N. (ed.) The Stanford Encyclopedia of Philosophy. Stanford University, Stanford, Metaphysics Research Lab (2018)

    Google Scholar 

  26. Isham, C.J.: Is it true; or is it false; or somewhere in between? The logic of quantum theory. In: Demopoulos, W., Pitowsky, I. (eds.) Physical Theory and Its Interpretation, pp. 161–182. Springer, The Netherlands (2006)

    Chapter  Google Scholar 

  27. Humberstone, L.: The connectives. MIT Press, Cambridge, MA (2011)

    Book  MATH  Google Scholar 

  28. Bergmann, M.: An Introduction to Many-Valued and Fuzzy Logic: Semantics, Algebras, and Derivation Systems. Cambridge University Press, Cambridge (2008)

    Book  MATH  Google Scholar 

  29. Piron, C.: Foundations of Quantum Physics. W. A. Benjamin Inc, New York (1976)

    MATH  Google Scholar 

  30. Halmos, P.R.: Introduction to Hilbert Space and the Spectral Theory of Spectral Multiplicity. Chelsea, New York (1957)

    MATH  Google Scholar 

  31. Dickson, M.: Quantum logic is alive \(\wedge\) (it is true \(\vee\) it is false). Philos. Sci. 68(3), S274–S287 (2001)

    Article  MathSciNet  Google Scholar 

  32. Putnam, H.: Is logic empirical? In: Cohen, R.S., Wartofsky, M.W. (eds.) Boston Studies in the Philosophy of Science, vol. 5, pp. 216–241. D. Reidel Publishing Company, Dordrecht (1968)

    Chapter  Google Scholar 

  33. Bacciagaluppi, G.: Is logic empirical? In: Engesser, K., Gabbay, D.M., Lehmann, D. (eds.) Handbook of Quantum Logic and Quantum Structures: Quantum Logic, pp. 49–78. Elsevier, New York (2009)

    Chapter  MATH  Google Scholar 

  34. Thomas, G.B., Finney, R.L.: Calculus and Analytic Geometry, 9th edn. Dorling Kindersley Pvt Ltd, Noida (2010)

    MATH  Google Scholar 

  35. Putnam, H.: Mathematics, Matter and Method (Philosophical Papers, Vol. 1). Cambridge University Press, Cambridge (1975)

  36. Chiara, M.L.D., Giuntini, R., Greechie, R.: Reasoning in Quantum Theory. Sharp and Unsharp Quantum Logics. Springer, Netherlands (2004)

    Book  MATH  Google Scholar 

  37. Griffiths, R.B.: The new quantum logic. Found Phys. 44, 610–640 (2014)

    Article  Google Scholar 

  38. Dummett, M.: Elements of Intuitionism. Oxford University Press, Oxford (1977)

    MATH  Google Scholar 

  39. Williamson, T.: Vagueness. Routledge, London (1994)

    Google Scholar 

  40. Keefe, R.: Theories of Vagueness. Cambridge University Press, Cambridge (2008)

    Google Scholar 

  41. Varzi, A.C.: Vagueness, logic and ontology. Dialogue 1, 135–154 (2001)

    Google Scholar 

  42. Faye, J.: Copenhagen interpretation of quantum mechanics. In: Zalta, E.N. (ed.) The Stanford Encyclopedia of Philosophy. Stanford University, Stanford, Metaphysics Research Lab (2019)

    Google Scholar 

  43. Trassinelli, M.: Relational quantum mechanics and probability. Found. Phys. 48, 1092–1111 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  44. Leggett, A.J., Garg, A.: Quantum mechanics versus macroscopic realism: is the flux there when nobody looks? Phys. Rev. Lett. 54(9), 857–860 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  45. Wigner, E.P.: Remarks on the mind-body question. In: Good, I.J. (ed.) The Scientist Speculates, pp. 284–302. William Heinemann Ltd, London (1961)

    Google Scholar 

  46. Frauchiger, D., Renner, R.: Quantum theory cannot consistently describe the use of itself. Nat. Commun. 9, 3711 (2018)

    Article  ADS  Google Scholar 

  47. Baumann, V., Brukner, C.: Wigner’s friend as a rational agent (2019). arXiv:1901.11274

  48. DeBrota, J.B., Stacey, B.C.: FAQBism (2019). arXiv:1810.13401 [quant-ph]

  49. Fuchs, C.A., Mermin, N.D., Schack, R.: An introduction to Qbism with an application to the locality of quantum mechanics. Am. J. Phys. 82, 749–754 (2014)

    Article  ADS  Google Scholar 

  50. Rovelli, C.: Relational quantum mechanics. Int. J. Theor. Phys. 35, 1637–1678 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  51. Biagio, A.D., Rovelli, C.: Stable facts, relative facts. Found. Phys., 51(30) (2021)

  52. DeBrota, J.B., Fuchs, C.A., Schack, R.: Respecting one's fellow: QBism's analysis of Wigner's friend. Found. Phys. 50, 1859–1874 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  53. Bracewell, R.: The Fourier Transform & Its Applications. McGraw-Hill Science, New York (1999)

    MATH  Google Scholar 

  54. Brukner, C.: A no-go theorem for observer-independent facts. Entropy 20(350), 1–10 (2018)

    MathSciNet  Google Scholar 

  55. Bong, K.-W., Utreras-Alarcon, A., Ghafari, F., Liang, Y.-C., Tischler, N., Cavalcanti, E.G., Pryde, G.J., Wiseman, H.M.: A strong no-go theorem on the Wigner's friend paradox. Nat. Phys. 16, 1199–1205 (2020)

    Article  Google Scholar 

  56. Proietti, M., Pickston, A., Graffitti, F., Barrow, P., Kundys, D., Branciard, C., Ringbauer, M., Fedrizzi, A.: Experimental test of local observer independence. Sci. Adv. 5(eaaw9832) (2019)

  57. Brown, J.R., Fehige, Y.: Thought experiments. In: Zalta, E.N. (ed.) The Stanford Encyclopedia of Philosophy. Stanford University, Stanford, Metaphysics Research Lab (2019)

    Google Scholar 

Download references

Acknowledgements

The author wishes to thank the anonymous referee for the inspiring remarks and constructive comments which helped him enrich and deepen this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arkady Bolotin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bolotin, A. Wave-Particle Duality and the Objectiveness of “True” and “False”. Found Phys 51, 78 (2021). https://doi.org/10.1007/s10701-021-00478-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10701-021-00478-1

Keywords

Navigation