Skip to main content

Macroscopic Superposition States in Isolated Quantum Systems

Abstract

For any choice of initial state and weak assumptions about the Hamiltonian, large isolated quantum systems undergoing Schrödinger evolution spend most of their time in macroscopic superposition states. The result follows from von Neumann’s 1929 Quantum Ergodic Theorem. As a specific example, we consider a box containing a solid ball and some gas molecules. Regardless of the initial state, the system will evolve into a quantum superposition of states with the ball in macroscopically different positions. Thus, despite their seeming fragility, macroscopic superposition states are ubiquitous consequences of quantum evolution. We discuss the connection to many worlds quantum mechanics.

This is a preview of subscription content, access via your institution.

References

  1. Wineland, D.: Nobel lecture: superposition, entanglement, and raising Schrödinger’s Cat. Rev. Mod. Phys. 85, 1103 (2013)

    Article  ADS  Google Scholar 

  2. von Neumann, J.: Beweis des Ergodensatzes und des H-Theorems (German). Z. Phys. 57, 30 (1929)

    Article  ADS  Google Scholar 

  3. Tumulka, R.: Proof of the Ergodic Theorem and the H-Theorem in Quantum Mechanics. Eur. Phys. J. H 35, 201 (2010)

    Article  Google Scholar 

  4. Goldstein, S., Lebowitz, J.L., Mastrodonato, C., Tumulka, R., Zanghı, N.: Normal Typicality and von Neumann’s Quantum Ergodic Theorem. Proc. R. Soc. Lond. A 466, 3203 (2010)

    ADS  MathSciNet  MATH  Google Scholar 

  5. Goldstein, S., Lebowitz, J.L., Tumulka, R., Zanghì, N.: Long-time behavior of macroscopic quantum systems: commentary accompanying the English translation of John von Neumann’s 1929 article on the Quantum Ergodic Theorem. Eur. Phys. J. H 35, 173 (2010)

    Article  Google Scholar 

  6. Popescu, S., Short, A.J., Winter, A.: Entanglement and the foundation of statistical mechanics. Nat. Phys. 2, 754 (2006)

    Article  Google Scholar 

  7. Rigol, M., Srednicki, M.: Alternatives to eigenstate thermalization. Phys. Rev. Lett. 108, 110601 (2012)

    Article  ADS  Google Scholar 

  8. Ledoux, M.: The Concentration of Measure Phenomenon, Mathematical Surveys and Monographs 89. American Mathematical Society, New York (2001)

    Google Scholar 

  9. Milman, V., Schechtman, G.: Asymptotic Theory of Finite Dimensional Normed Spaces. Lecture Notes in Mathematics. Springer, Berlin (1986)

    MATH  Google Scholar 

  10. Jenkinson, J.: Convex Geometric Connections to Information Theory, Doctoral Dissertation, Case Western Reserve University (2013)

  11. Messiah, A.: Quantum Mechanics, vol. 1, p. 361. North Holland Publishing Company, Amsterdam (1961)

    Google Scholar 

  12. Reimann, P.: Phys. Rev. Lett. 115, 010403 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  13. Everett, H., III.: "Relative State" Formulation of Quantum Mechanics. Rev. Mod. Phys. 29, 454 (1957)

    Article  ADS  MathSciNet  Google Scholar 

  14. Everett, H.: The Theory of the Universal Wavefunction (PhD thesis), reprinted in B. S. DeWitt and R. N. Graham (eds.), The Many-Worlds Interpretation of Quantum Mechanics. Princeton University Press, Princeton (1973)

    Google Scholar 

  15. Barrett, J., Byrne, P.: The Everett Interpretation of Quantum Mechanics: Collected Works 1955–1980 with Commentary. Princeton University Press, Princeton (2012)

    Book  Google Scholar 

  16. S. D. H. Hsu, On the origin of probability in quantum mechanics. Mod. Phys. Lett. A 27, 1230014 (2012)

    Article  ADS  Google Scholar 

  17. Giulini, D., Kiefer, C., Joos, E., Kupsch, J., Stamatescu, I.O., Zeh, H.D.: Decoherence and the Appearance of a Classical World in Quantum Theory. Springer, Berlin (2003)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen D. H. Hsu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A

Appendix A

Writing \(c_{j_1,j_2}=c'_{j_1,j_2}+ic''_{j_1,j_2}\), where \(c'_{j_1,k_1}, c''_{j_1,k_1}\in {\mathbb {R}}\),

$$\begin{aligned} \sum _{j_1=1}^{n_1} \sum _{j_2=1}^{n_2} (c^{\prime 2}_{1,j_1,k_1} +c^{\prime \prime 2}_{j_1,k_1}) =1, \end{aligned}$$
(16)

and using

$$\begin{aligned}&{{\,\mathrm{Re}\,}}{(\rho _1)_{j_1,k_1}} =\sum _{j_2=1}^{n_2} (c'_{j_1,j_2}c'_{k_1,j_2} +c''_{j_1,j_2}c''_{k_1,j_2}), \end{aligned}$$
(17)
$$\begin{aligned}&{{\,\mathrm{Im}\,}}{(\rho _1)_{j_1,k_1}} =\sum _{j_2=1}^{n_2} (c''_{j_1,j_2}c'_{k_1,j_2} -c'_{j_1,j_2}c''_{k_1,j_2}), \end{aligned}$$
(18)

we find

$$\begin{aligned} \Vert \nabla _c {{\,\mathrm{Re}\,}}{(\rho _1)_{j_1,k_1}}\Vert ^2&=\Vert \left( \delta _{l_1,j_1} c'_{k_1,l_2} +c'_{j_1,l_2}\delta _{l_1,k_1}, \delta _{l_1,j_1} c''_{k_1,l_2} +c''_{j_1,l_2}\delta _{l_1,k_1} \right) _{1\le l_1\le n_1,1\le l_2\le n_2}\Vert ^2 \nonumber \\&=\sum _{l_2=1}^{n_2} \left( c^{\prime 2}_{j_1,l_2} +c^{\prime \prime 2}_{j_1,l_2} +c^{\prime 2}_{k_1,l_2} +c^{\prime \prime 2}_{k_1,l_2} \right) +2\delta _{j_1,k_1}\sum _{l_2=1}^{n_2} \left( c^{\prime 2}_{j_1,l_2} +c^{\prime \prime 2}_{j_1,l_2} \right) \nonumber \\&=\sum _{l_2=1}^{n_2} \left( |c_{j_1,l_2}|^2 +|c_{k_1,l_2}|^2 \right) +2\delta _{j_1,k_1}\sum _{l_2=1}^{n_2} |c_{j_1,l_2}|^2 \end{aligned}$$
(19)
$$\begin{aligned} \Vert \nabla _c {{\,\mathrm{Im}\,}}{(\rho _1)_{j_1,k_1}}\Vert ^2&=\Vert \left( c''_{j_1,l_2}\delta _{l_1,k_1} -\delta _{l_1,j_1}c''_{k_1,l_2}, \delta _{l_1,j_1}c'_{k_1,l_2} -c'_{j_1,l_2}\delta _{l_1,k_1} \right) _{1\le l_1\le n_1,1\le l_2\le n_2}\Vert ^2 \nonumber \\&=\sum _{l_2=1}^{n_2} \left( c^{\prime 2}_{j_1,l_2} +c^{\prime \prime 2}_{j_1,l_2} +c^{\prime 2}_{k_1,l_2} +c^{\prime \prime 2}_{k_1,l_2} \right) -2\delta _{j_1,k_1}\sum _{l_2=1}^{n_2} \left( c^{\prime 2}_{j_1,l_2} +c^{\prime \prime 2}_{j_1,l_2} \right) \nonumber \\&=\sum _{l_2=1}^{n_2} \left( |c_{j_1,l_2}|^2 +|c_{k_1,l_2}|^2 \right) -2\delta _{j_1,k_1}\sum _{l_2=1}^{n_2} |c_{j_1,l_2}|^2. \end{aligned}$$
(20)

As a result,

$$\begin{aligned}&\Vert \nabla _c {{\,\mathrm{Re}\,}}{(\rho _1)_{j_1,j_1}}\Vert ^2 \le 4, \end{aligned}$$
(21)
$$\begin{aligned}&\Vert \nabla _c {{\,\mathrm{Re}\,}}{(\rho _1)_{j_1,k_1}}\Vert ^2 \le 1, \quad j_1\not =k_1, \end{aligned}$$
(22)
$$\begin{aligned}&\Vert \nabla _c {{\,\mathrm{Im}\,}}{(\rho _1)_{j_1,k_1}}\Vert ^2 \le 1, \quad j_1\not =k_1. \end{aligned}$$
(23)

For bounds (8) and (9) on the off-diagonal terms in \(\rho _1\) we use a somewhat stronger inequality as the median \({\mathsf {M}}{f}\) and expectation \({\mathsf {E}}{f}\) coincide: \({\mathsf {P}}{(|f- {\mathsf {M}}{f}|\ge \epsilon )} \le \exp ( - n_1 n_2 \epsilon ^2 \Vert f\Vert ^{-2}_{\text {L}} )\), Proposition A.0.5 in [9]. For probability of deviation from expectation we use Proposition 1.8 in [7] and the median result to obtain

$$\begin{aligned} {\mathsf {P}}{(|f-{\mathsf {E}}{f}|\ge \epsilon )} \le \exp {\left( -\frac{n_1 n_2 (\epsilon -\delta )^2}{\Vert f\Vert ^2_{\text {L}}}\right) } \end{aligned}$$
(24)

with \(\delta = (\frac{\pi }{4 n_1 n_2})^{1/2} \Vert f\Vert _{\text {L}}\) and \(\epsilon \ge \delta\). The specific bounds we obtain from concentration of measure are stronger than those previously given in the literature as expressions of Levy’s Lemma. They can be applied, for example, to relatively small quantum systems in the laboratory.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Buniy, R.V., Hsu, S.D.H. Macroscopic Superposition States in Isolated Quantum Systems. Found Phys 51, 85 (2021). https://doi.org/10.1007/s10701-021-00477-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10701-021-00477-2

Keywords

  • Quantum mechanics
  • Quantum foundations
  • Decoherence