Skip to main content
Log in

Thermodynamic Theory for Simple and Complex Dissipative Structures

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

Dissipative structures (DS) exist at all scales, systems, and at different levels of complexity. A thermodynamic theory integrating simple and complex DS is introduced, which addresses existence of growing/decaying DS based on their entropy analysis. Two entropy-based dimensionless ratios are introduced, which explain negentropy-debt payment and existence of DS with growth or decay. It is shown that excess negentropy debt payment is needed and beneficial for growing DS; but for decaying DS, it hastens its approach to perish and is counter-productive. Growing complex DS tend to pay lower negentropy debt to their surroundings, due to involvement in other activities enabled by complexity; e.g. mediation for survival that is linked to their mortality. Hence, disorder of complex DS increases, due to which, their growth can be un-sustained, leading to entry in decay-phase in spite of availability of adequate mass-energy in-flows. Proper handling or reduction of complexity enables growth in the direction of ideal growth (without increase in disorder of DS), which is limited only by availability of adequate mass-energy in-flows.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Swenson, R.: The fourth law of thermodynamics or the law of maximum entropy production (LMEP). Chemistry 18, 333–339 (2009)

    Google Scholar 

  2. Chung, B.J., McDermid, K., Vaidya, A.: On the affordances of the MaxEP principle. Eur. Phys. J. B 87, 20 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  3. Mahulikar, S.P., Sengupta, T.K., Sharma, N., Rastogi, P.: Thermodynamic merger of fluctuation theorem and principle of least action: case of Rayleigh–Taylor instability. J. Non-Equilib. Thermodyn. 44, 363–371 (2019)

    Article  ADS  Google Scholar 

  4. Belyi, V.V.: Fluctuation-dissipation relations for a nonlocal plasma. Phys. Rev. Lett. 88, 4 (2002)

    Article  Google Scholar 

  5. Belyi, V.V.: Fluctuations out of equilibrium. Philos. Trans. R. Soc. A 376, 15 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  6. Ebeling, W., Feistel, R.: Theory of self-organization and evolution - the role of entropy, value and information. J. Non-Equilib. Thermodyn. 17, 303–332 (1992)

    MATH  Google Scholar 

  7. Lefever, R.: Dissipative structures in chemical systems. J. Chem. Phys. 49, 4977–4978 (1968)

    Article  ADS  Google Scholar 

  8. Skene, K.R.: Life’s a gas: A thermodynamic theory of biological evolution. Entropy 17, 5522–5548 (2015)

    Article  ADS  Google Scholar 

  9. Bejan, A.: Entropy generation minimization: the new thermodynamics of finite-size devices and finite-time processes. J. Appl. Phys. 79, 1191–1218 (1996)

    Article  ADS  Google Scholar 

  10. Prigogine, I., Mayne, F., George, C., Dehaan, M.: Microscopic theory of irreversible processes. Proc. Nat. Acad. Sci. USA 74, 4152–4156 (1977)

    Article  ADS  MathSciNet  Google Scholar 

  11. Kondepudi, D.K., Petrosky, T., Pojman, J.A.: Dissipative structures and irreversibility in nature: celebrating 100th birth anniversary of Ilya Prigogine (1917–2003). Chaos 27, 104501 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Prigogine, I., Nicolis, G.: On symmetry-breaking instabilities in dissipative systems. J. Chem. Phys. 46, 3542–3550 (1967)

    Article  ADS  Google Scholar 

  13. Kondepudi, D.K., Bari, B.D., Dixon, J.A.: Dissipative structures, organisms and evolution. Entropy 22, 1305 (2020)

    Article  ADS  Google Scholar 

  14. Martínez de la Fuente, I.: Quantitative analysis of cellular metabolic dissipative, self-organized structures. Int. J. Mol. Sci. 11, 3540–3599 (2010)

    Article  Google Scholar 

  15. Glansdorff, P., Prigogine, I.: On a general evolution criterion in macroscopic physics. Physica 30, 351–374 (1964)

    Article  ADS  MathSciNet  Google Scholar 

  16. Micheau, J.C., de Min, M., Gimenez, M.: Dissipative structures and amplification of enantiomeric excess (an experimental point of view). Biosystems 20, 85–93 (1987)

    Article  Google Scholar 

  17. Sidelnikov, D.I., Gritsenko, O.V., Simonova, A.P., Rambidi, N.G., Polezhaev, A.A., Chernavskii, D.S.: Nonlinear dynamics of the distributed biochemical systems functioning in the dissipative structure formation mode. Biol. Cybern. 68, 53–62 (1992)

    Article  MATH  Google Scholar 

  18. Salthe, S.N.: The natural philosophy of work. Entropy 9, 83–99 (2007)

    Article  ADS  Google Scholar 

  19. Bertalanffy, L.v.: An outline of general system theory. Br. J. Philos. Sci. 1, 134–165 (1950)

    Article  MathSciNet  Google Scholar 

  20. Abel, D.L., Trevors, J.T.: Self-organization vs. self-ordering events in life-origin models. Phys. Life Rev. 3, 211–228 (2006)

    Article  ADS  Google Scholar 

  21. Prigogine, I.: Time, structure and fluctuations. Science 201, 777–785 (1978)

    Article  ADS  Google Scholar 

  22. Kondepudi, D.K., Kay, B., Dixon, J.A.: Dissipative structures, machines, and organisms: a perspective. Chaos 27, 104607 (2017)

    Article  ADS  Google Scholar 

  23. Mahulikar, S.P., Rastogi, P.: Study of black-hole as dissipative structure using negentropy. Can. J. Phys. 94, 960–966 (2016)

    Article  ADS  Google Scholar 

  24. Liu, C.J., Liu, Y.: Negative entropy flow and its effect on the organization of synoptic-scale severe atmospheric systems. Geophys. Res. Lett. 31, L01108 (2004)

    Article  ADS  Google Scholar 

  25. Hordijk, W., Steel, M., Dittrich, P.: Autocatalytic sets and chemical organizations: modeling self-sustaining reaction networks at the origin of life. New J. Phys. 20, 015011 (2018)

    Article  ADS  Google Scholar 

  26. Penzias, A.A., Wilson, R.W.: A measurement of excess antenna temperature at 4080 Mc/s. Astrophys. J. 142, 419–421 (1965)

    Article  ADS  Google Scholar 

  27. Hawking, S.W.: Particle creation by black holes. Commun. Math. Phys. 43, 199–220 (1975)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. Hawking, S.W.: Black hole explosions? Nature 248, 30–31 (1974)

    Article  ADS  MATH  Google Scholar 

  29. Goldbeter, A.: Biological rhythms as temporal dissipative structures. Adv. Chem. Phys. 135, 253–295 (2007)

    Google Scholar 

  30. McCree, K.J.: The action spectrum, absorptance and quantum yield of photosynthesis in crop plants. J. Agric. Meteorol. 9, 191–216 (1972)

    Article  Google Scholar 

  31. Ahmad, S.: Information generating, sharing and manipulating source-reservoir-sink model of self-organizing dissipative structures. Chaos 28, 123125 (2018)

    Article  ADS  Google Scholar 

  32. Ebeling, W.: On the entropy of dissipative and turbulent structures. Phys. Scr. T25, 238–242 (1989)

    Article  ADS  Google Scholar 

  33. Karsenti, E.: Self-organization in cell biology: a brief history. Nat. Rev. Mol. Cell Biol. 9, 255–262 (2008)

    Article  Google Scholar 

  34. Lefever, R.: The rehabilitation of irreversible processes and dissipative structures’ 50th anniversary. Phil. Trans. R. Soc. A 376, 20170365 (2018)

    Article  ADS  Google Scholar 

  35. Grabert, H., Green, M.S.: Fluctuations and nonlinear irreversible processes. Phys. Rev. A 19, 1747–1756 (1979)

    Article  ADS  MathSciNet  Google Scholar 

  36. Aoki, I.: Entropy production in living systems: from organisms to ecosystems. Thermochim. Acta 250, 359–370 (1995)

    Article  Google Scholar 

  37. Ban, T.: Thermodynamic analysis of bistability in Rayleigh-Benard convection. Entropy 22, 8 (2020)

    Article  Google Scholar 

  38. Meyer, C.W., Cannell, D.S., Ahlers, G., Swift, J.B., Hohenberg, P.C.: Pattern competition in temporally modulated Rayleigh-Bénard convection. Phys. Rev. Lett. 61, 947–950 (1988)

    Article  ADS  Google Scholar 

  39. Davies, P.C.W., Rieper, E., Tuszynski, J.A.: Self-organization and entropy reduction in a living cell. Biosystems 111, 1–10 (2013)

    Article  Google Scholar 

  40. Aoki, I.: Entropy principle for human development, growth and aging. J. Theor. Biol. 150, 215–223 (1991)

    Article  Google Scholar 

  41. Cisternas, J., Escaff, D., Clerc, M.G., Lefever, R., Tlidi, M.: Gapped vegetation patterns: crown/root allometry and snaking bifurcation. Chaos Soliton Fract. 133, 109617 (2020)

    Article  MathSciNet  Google Scholar 

  42. Kondepudi, D.K., Kay, B., Dixon, J.A.: End-directed evolution and the emergence of energy-seeking behavior in a complex system. Phys. Rev. E 91, 050902 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  43. Frautschi, S.: Entropy in an expanding universe. Science 217, 593–599 (1982)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Authors are grateful to research project nos. (i) RI/0100-10000483 (PGRDFI00009 = Personal Research Development Fund of Shripad P. Mahulikar @ IIT-Bombay), (ii) RI/0210-10000483-001 (10IRAWD005 = Industrial Research & Consultancy Center – Awards Research Project of Shripad P. Mahulikar @ IIT-Bombay); for the sponsorship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shripad P. Mahulikar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rastogi, P., Mahulikar, S.P. Thermodynamic Theory for Simple and Complex Dissipative Structures. Found Phys 51, 71 (2021). https://doi.org/10.1007/s10701-021-00473-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10701-021-00473-6

Keywords

Navigation