We admit that not yet all questions have been answered, but there is a thing that we are quite certain about: in spite of the fact that our theory is entirely ontological, it is also controlled by a Schrödinger equation, and with the Hamiltonians (2) and (7) all inserted, this Schrödinger equation is exactly valid; it is genuinely quantum mechanical.
The difficulties many readers appear to have in reading our recent papers, and probably also this one, are due to the fact that, in all conventional discussions, quantum mechanics is dealt with as a theory. The present author however, has learned to understand that quantum mechanics is nothing but a superior way to handle the mathematics of discrete dynamical systems. The equations that are assumed to describe the dynamical evolution laws are entirely classical – the words Hilbert space and Schrödinger equations are not used when these original dynamical laws are defined.
An accurate account of this situation is: we are dealing with a system of states that evolve as dictated by a unitary operator that happens to coincide with an element of the permutation group. For this reason, the theory is classical: all its allowed states dance to the tune of the permutation group. But the unitary evolution operator can also be written as the exponent of a Hamiltonian operator, and hence it is quantum mechanical as well.
Subsequently, we may decide to make an arbitrary unitary transformation to any other basis of Hilbert space .We may interpret the evolution operator exactly as dictated by Copenhagen. In general, the transformed evolution operator seems to handle probabilities and uncertainties in the usual quantum mechanical way, but now we also observe that both the initial state and the final state are superpositions of the ontological basis elements. If we interpret the absolute squares of the coefficient amplitudes as probabilities [13], we get the complete story as given by Copenhagen. This is real quantum mechanics.
We use statistics and probabilities as exact approaches, without allowing for uncertainties in the equations of motion. The only uncertainties allowed are generated by our ignorance concerning the initial states. Given a system of planets, or atoms or radiating fields, one usually has to deal with some randomisation in the initial states. In this paper we just limit the uncertainties entirely to the initial states of the fast variables.
Because of this—no surprise—also the final states will form statistical distributions. The relation between initial state and final state, on the other hand, must be determined by the theory with infinite precision, since exact dynamical equations were given.
What we call quantum mechanics, therefore, is nothing but a mathematical tool. Use is made of wave functions, but we can ordain that also these wave functions describe certainties, not vague distributions, and, in our quantum mechanical language, this is realised by restricting ourselves to wave functions taking only the values 1 and 0, while also the evolution law does not move them away from the 1s and 0s, so that one finds the evolution operator to consist exclusively of permutations of states—note that, these permutations do not yet generate minus signs–. But permutation operators can perfectly well be written as unitary operators, and we are allowed to apply completely general unitary transformations to whatever basis of Hilbert space elements we wish to use. If the Born rule is defined to generate probabilities out of amplitudes squared, this gives us a superior mathematical scheme for handling probability distributions, without any modification of the (deterministic) physical laws.
Phrasing our procedures along such lines, we are left with one more difficult question: which classical system or systems can actually be used to approach the world we see, and in particular: the Standard Model of the elementary particles? How can we match the underlying classical system with all observations that have been made concerning these particles?
We now answer the question by stating that the classical model may not only describe the states we see, but also some hidden variables, which we consider to be fast, oscillating variables. These variables could be the (classical) fields of, as yet unknown, super heavy particles.
We decide to average over the initial states of the fast variables in our approach. This is tantamount to postulating the fast variables to be in their lowest energy eigenmodes. Subsequently, we use energy conservation to observe that the excited energy modes will be strongly suppressed at all stages of the evolving system, just because the energy levels of the fast modes are too far separated; the energy to excite them is not available.
Now the energy eigenstates are quantum mixtures of the original pure ontological states, and this is why we soon enough encounter quantum superpositions in our slow variables as well. The entire quantum mechanical machinery applies. It is not “assumed to apply”, it is found to be applicable. Thus we actually derived that quantum mechanics is inevitable when fast moving, discrete but deterministic, variables cannot be followed closely enough to keep these classical states all the way. It is merely an act of efficiency to allow the fast states to get mixed. Only the slow variables are now seen to evolve into superpositions of themselves, as we showed.
Whatever the higher order corrections are that will ensue from our model Hamiltonian, they will merely be small corrections that do not jeopardise the quantum nature of the system.
The real reason why we have evaded the usual no-go barriers is something more subtle: we imposed that the higher energy states must be forbidden by the law of energy conservation. It is the total energy that is constrained to be small. “Small” here means small in he units of the fast variables; the constraint is insignificant in the units of the slow variables, so that, for the slow variables, the first N energy eigen states contribute.
Via thermodynamics, this also generates statistical dominance of these (relatively) low energy states locally. Thus we effectively added the total energy to our set of ontological observables. This is a new twist to our story. Energy does not commute with our other ontological observables. We know from practical experiences with quantum mechanics however that energy is observable, but only if other ontic observables are smeared over time. Now since we talk of very large energies in the fast variable, we will be dealing with time smearing over tiny, hence in practice insignificant, amounts of time.
In terms of our classical observables, the quantum notion of energy does not exist. When we say that the fast variables are in their energy ground state, what this really means is that the probability distribution of these fast variables is assumed to be strictly uniform (this property holds for all pure energy eigenstates; it does not hold for superpositions of these eigenstates). As soon as we add ripples in this distribution, this is tantamount to admixing higher energy modes. We use this observation in our discussion of interference, see Appendix A.
This will affect all other statistical distributions. We can use either quantum mechanical or classical formalisms to deduce what is the most likely thing to happen; the outcome of our calculations should not depend on how we perform them.
Important observations may be added concerning the question of quantum interference. In view of the importance of this issue we took it out of the main text of this paper by adding a special appendix to explain the situation, Appendix A.
Thus we conclude that all that is needed to turn a classical system into a quantum mechanical one, is to define energy as it is only done in quantum mechanics, that is, by diagonalising the evolution operator. After this, one has to postulate that the fastest moving parts of the system must be limited to their lowest energy states. Effectively, this amounts to slightly smearing the amplitudes in the time direction in order to account for the limitations in our time resolution.
Besides possible modifications of the Standard Model in its highest energy domains, there may be implications for investigations of cosmology. When the universe was very small, the energy density must have been very high. Maybe all energy states were equally occupied when the universe started as a single point, or almost as a point. At the indivisible instant of the Big Bang, there was no quantum mechanics yet. The universe expanded, and this forced it to cool off. Subsequently, the laws of thermodynamics deprived our world of its highest energy states, with quantum mechanics as a result.
We also see implications for quantum black hole physics. When a black hole forms, imploding matter gets compressed against the past event horizon, as seen by a distant observer at later times. Similarly, outgoing Hawking particles line up along the future event horizon, ready to spring to life much later. When matter reaches very high energy densities this way, it may well be that the highest energy state possible is approached near both horizons. This state contrasts with the state with lowest possible energy density, the vacuum state. We called it the ‘antivacuum’ state. In the classical picture, a symmetry relating vacuum to antivacuum seems to be evident. When we describe stationary black holes, matter appears to be almost absent, as if the antivacuum of compressed imploding particles has been transformed into a vacuum. Since matter is the source of curvature, this replacement of antivacuum with vacuum forces the past and future horizons to change their effects on space and time. This is where the ‘antipodal identification’ is suspected to originate. Antipodal identification is known to be needed if one wants to restore unitarity for the evolution of a stationary black hole.[34]
Note that, in crossing the event horizons, one lands in domains where the sign of the Hamiltonian is inverted. Indeed, this corresponds to a transition where vacuum and antivacuum are interchanged, and it also answers an objection raised by E. Witten to the author: the i in Schrödinger’s equation turns into \(-i\) when you invert time; should this not invalidate the antipodal identification? Our answer is no, if we take care of also inverting the particle - antiparticle population while crossing a horizon.Footnote 17
Note also that, for the fast classical variables, there is hardly any distinction between the lowest energy states and the highest energy states.
Other questions are also still wide open: for instance, we wish to explain the existence of quite a lot of continuous, global and local symmetries of our world. Making discrete, classical theories that respect these symmetries (gauge symmetries, Goldstone symmetries, special and general relativity, supersymmetry perhaps, and so on), is notoriously difficult.
We do mention in passing that there may exist interesting approximate symmetry transformations in nature’s cellular automaton. These symmetry operations will not quite commute with the Hamiltonian, but instead, act much in the way of, bosonic or fermionic, physical particle fields. One may wish to conjecture that this is what the particle fields of the Standard Model really are; they describe the known particles as low energy excitations. Through the Goldstone theorem, the masses of the physical particles are indicative for the violation of these approximate symmetries. And as these masses are indeed very low as regarded in the Planck regime, we are dealing with very interesting approximate symmetries.
Such and other questions are left for future investigations.
In our model, all slow observables \(|i\rangle \,,\ |j\rangle \,, \ \dots \) are ontological, but the fast ones are put in an energy eigenstate, which is ontological, or more precisely, the total energy of the entire universe is declared to be ontological.Footnote 18 The computational rules are as in ordinary quantum mechanics, but the entire theory is fundamentally deterministic. Statistics enters at the moment we single out the ground state for the fast variables.
At first sight, our model differs widely from the Standard Model, but it does seem to be built from variables that may be regarded as quantum fields. One suspects then that these quantum fields are separated into slow and rapidly moving components, which may well take discrete values when regarded at the Planck scale. We see that refined restructuring of nature’s degrees of freedom at the ultimate physical length and time scale, will be inevitable; model building with such ideas in mind will be left for future, more advanced investigations.
Regarding our observation that models of the sort described here are perfectly guaranteed to represent pure quantum mechanics, it may well be that a strict separation between fast and slow modes is unnecessary. Even the Standard Model admits, and indeed favours, the existence of ultra heavy particles. The vacuum fluctuations of their quantised fields are perfectly suitable to play the role of fast variables, and this is why we suspect that, indeed, quantum mechanics generated in line with our description, is almost inevitable. Thus, our theory also explains why we have quantum mechanics.
In Appendix C, we speculate further on the emergence of symmetry groups and low mass particles in the Standard Model.
We conclude that quantum mechanics may well be perfectly understandable if the right mathematical framework is used. For this author, the present results turn quantum mechanics as it was known in the literature, into a completely conventional, yet complex, classical system. The fastest variables take values that can best be described as ‘white noise’. The slower variables react by taking values that can only be understood as statistical data. What is presently known as ‘quantum mechanics’ is nothing more than a machinery for the optimal treatment of the statistical rules.
An intriguing observation is furthermore that the quantum field variables appear to be constrained to lattices (the locations \(x_{i}\) of the fast variables in our model). This forces also the interaction constants of the resulting theories to lie on lattices; they are not continuously adjustable. This is why one may suspect that investigations of this type may be useful for the future of model building.