Skip to main content
Log in

Wormholes Within the Framework of \(f(R, T)=R+\alpha R^2+\lambda T\) Gravity

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

In this work, we explore modeling of wormholes in framework of f(RT) gravity with the functional form \(f(R, T)= R+\alpha R^2 +\lambda T\), where R and T are the Ricci scalar and trace of energy-momentum tensor respectively, \(\alpha\) and \(\lambda\) are arbitrary constants. Using the equation of state (EoS) \(p_r=\omega \rho\) and shape function \(b(r)= {\frac{r_{{0}}{a}^{r}}{{a}^{r_{{0}}}}},\, (0< a < 1)\) wormhole solutions are obtained, which obey the necessary metric conditions. The energy conditions are discussed and anisotropy parameter is analyzed. In this framework, quadratic geometric term and linear matter corrections make the wormhole’s matter substance remarkably capable of obeying the energy conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Perlmutter, S., et al.: Measurements of the cosmological parameters Omega and Lambda from the first 7 supernovae at \(z>=0.35\). Astrophys. J. 483, 565 (1997)

    Article  ADS  Google Scholar 

  2. Perlmutter, S., et al.: Supernova Cosmology Project. Nature. 391, 51 (1998)

    Article  ADS  Google Scholar 

  3. Perlmutter, S., et al.: Supernova Cosmology Project. Astrophys. J. 517, 565 (1999)

    Article  ADS  Google Scholar 

  4. Starobinsky, A.A.: A new type of isotropic cosmological models without singularity. Phys. Lett. B 91, 99 (1980)

    Article  ADS  MATH  Google Scholar 

  5. Thongkool, I., Sami, M., Gannouji, R., Jhingan, S.: Constraining f (R) gravity models with disappearing cosmological constant. Phys. Rev. D 80(4), 043523 (2009)

    Article  ADS  Google Scholar 

  6. Appleby, S.A., Battye, R.A., Starobinsky, A.A.: Curing singularities in cosmological evolution of \(F (R)\) gravity. JCAP 1006, 005 (2010)

    Article  ADS  Google Scholar 

  7. Nojiri, S.I., Odintsov, S.D.: Unified cosmic history in modified gravity: from \(F(R)\) theory to Lorentz non-invariant models. Phys. Rep. 505(2–4), 59–144 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  8. Myrzakulov, R., Sebastiani, L., Vagnozzi, S.: Inflation in \(f(R,\phi )\)-theories and mimetic gravity scenario. Eur. Phys. J. C 75(9), 444 (2015)

    Article  ADS  Google Scholar 

  9. Barvinsky, A.O., Kamenshchik, A.Y., Nesterov, D.V.: Origin of inflation in CFT driven cosmology: \(R^ 2\)-gravity and non-minimally coupled inflaton models. Eur. Phys. J. C 75(12), 1–18 (2015)

    Article  Google Scholar 

  10. Capozziello, S., Cardone, V.F., Troisi, A.: Low surface brightness galaxy rotation curves in the low energy limit of \(R^{n}\) gravity: no need for dark matter? MNRAS. 375(4), 1423–1440 (2007)

    Article  ADS  Google Scholar 

  11. Bamba, K., Odintsov, S.D., Tretyakov, P.V.: Inflation in a conformally invariant two-scalar-field theory with an extra \(R^ 2\) term. Eur. Phys. J. C 75(7), 344 (2015)

    Article  ADS  Google Scholar 

  12. Ferraro, R., Fiorini, F.: Modified teleparallel gravity: inflation without an inflaton. Phys. Rev. D 75(8), 084031 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  13. Zubair, M.: Phantom crossing with collisional matter in \(f (T)\) gravity. Int. J. Mod. Phys. D 25(05), 1650057 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Agnese, A.G., La Camera, M.: Wormholes in the Brans–Dicke theory of gravitation. Phys. Rev. D 51(4), 2011 (1995)

    Article  ADS  Google Scholar 

  15. Carroll, S.M., et al.: Cosmology of generalized modified gravity models. Phys. Rev. D 71(6), 063513 (2005)

    Article  ADS  Google Scholar 

  16. Cognola, G., et al.: Dark energy in modified Gauss–Bonnet gravity: late-time acceleration and the hierarchy problem. Phys. Rev. D 73(8), 084007 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  17. Kofinas, G., Saridakis, E.N.: Teleparallel equivalent of Gauss–Bonnet gravity and its modifications. Phys. Rev. D 90(8), 084044 (2014)

    Article  ADS  Google Scholar 

  18. Harko, T., Lobo, F.S., Nojiri, S.I., Odintsov, S.D.: \(f (R, T)\) gravity. Phys. Rev. D 84(2), 024020 (2011)

    Article  ADS  Google Scholar 

  19. Houndjo, M.J.S.: Reconstruction of \(f (R, T)\) gravity describing matter dominated and accelerated phases. Int. J. Mod. Phys. D 21(01), 1250003 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Shabani, H., Farhoudi, M.: Cosmological and solar system consequences of \(f (R, T)\) gravity models. Phys. Rev. D 90(4), 044031 (2014)

    Article  ADS  Google Scholar 

  21. Shabani, H., Ziaie, A.H.: Stability of the Einstein static universe in \(f (R, T)\) gravity. Eur. Phys. J. C 77(1), 1–15 (2017)

    Article  ADS  Google Scholar 

  22. Houndjo, M.J.S., Piattella, O.F.: Reconstructing \(f (R, T)\) gravity from holographic dark energy. Int. J. Mod. Phys. D 21(03), 1250024 (2012)

    Article  ADS  MATH  Google Scholar 

  23. Starobinsky, A.A.: Disappearing cosmological constant in \(f (R)\) gravity. JETP lett. 86(3), 157–163 (2007)

    Article  ADS  Google Scholar 

  24. Fu, X., Wu, P., Yu, H.: The growth factor of matter perturbations in \(f (R)\) gravity. Eur. Phys. J. C 68(1–2), 271–276 (2010)

    Article  ADS  Google Scholar 

  25. Pavlovic, P., Sossich, M.: Wormholes in viable modified theories of gravity and weak energy condition. Eur. Phys. J. C 75(3), 117 (2015)

    Article  ADS  Google Scholar 

  26. Kaneda, S., Ketov, S.V.: Starobinsky-like two-field inflation. Eur. Phys. J. C 76(1), 26 (2016)

    Article  ADS  Google Scholar 

  27. Einstein, A., Rosen, N.: The particle problem in the general theory of relativity. Phys. Rev. 48(1), 73 (1935)

    Article  ADS  MATH  Google Scholar 

  28. Morris, M.S., Thorne, K.S.: Wormholes in spacetime and their use for interstellar travel: a tool for teaching general relativity. Am. J. Phys. 56(5), 395–412 (1988)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. Lobo, F.S., Oliveira, M.A.: Wormhole geometries in \(f (R)\) modified theories of gravity. Phys. Rev. D 80(10), 104012 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  30. Azizi, T.: Wormhole geometries in \(f (R, T)\) gravity. Int. J. Theor. Phys. 52(10), 3486–3493 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  31. Gorbunov, D., Tokareva, A.: Scalaron production in contracting astrophysical objects. J. Exp. Theor. Phys. 120(3), 528–532 (2015)

    Article  ADS  Google Scholar 

  32. Moraes, P.H.R.S., Santos, J.R.L.: A complete cosmological scenario from \(f (R, T^{\phi })\) gravity theory. Eur. Phys. J. C 76(2), 60 (2016)

    Article  ADS  Google Scholar 

  33. Moraes, P.H.R.S., Correa, R.A.C., Lobato, R.V.: Analytical general solutions for static wormholes in \(f (R, T)\) gravity. JCAP. 7, 029 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  34. Moraes, P.H.R.S., Sahoo, P.K.: Modeling wormholes in \(f (R, T)\) gravity. Phys. Rev. D 96(4), 044038 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  35. Yousaf, Z., Ilyas, M., Bhatti, M.Z.: Influence of modification of gravity on spherical wormhole models. Mod. Phys. Lett. A 32(30), 1750163 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. Mishra, A.K., Sharma, U.K., Dubey, V.C., Pradhan, A.: Traversable wormholes in \(f (R, T)\) gravity. Astrophys. Space Sci. 365(2), 1–11 (2020)

    MathSciNet  Google Scholar 

  37. Sahoo, P., Mandal, S., Sahoo, P.K.: Wormhole model with a hybrid shape function in \(f(R, T)\) gravity. New Astron. 80, 101421 (2020)

    Article  Google Scholar 

  38. Noureen, I., Zubair, M.: Dynamical instability and expansion-free condition in \(f (R, T)\) gravity. Eur. Phys. J. C 75(2), 62 (2015)

    Article  ADS  Google Scholar 

  39. Noureen, I., Zubair, M., Bhatti, A.A., Abbas, G.: Shear-free condition and dynamical instability in \(f (R, T)\) gravity. Eur. Phys. J. C 75(7), 323 (2015)

    Article  ADS  Google Scholar 

  40. Zubair, M., Noureen, I.: Evolution of axially symmetric anisotropic sources in \(f (R, T)\) gravity. Eur. Phys. J. C 75(6), 265 (2015)

    Article  ADS  Google Scholar 

  41. Sahoo, P.K., Moraes, P.H.R.S., Sahoo, P.: Wormholes in \(R^ 2\)-gravity within the \(f (R, T)\) formalism. Eur. Phys. J. C 78, 46 (2018)

    Article  ADS  Google Scholar 

  42. Visser, M.: Lorentzian wormholes: from Einstein to Hawking. AIP Press, New York (1995)

    Google Scholar 

  43. Cataldo, M., Meza, P., Minning, P.: N-dimensional static and evolving Lorentzian wormholes with a cosmological constant. Phys. Rev. D 83(4), 044050 (2011)

    Article  ADS  Google Scholar 

  44. Rahaman, F., et al.: Wormhole with varying cosmological constant. Gen. Rel. Grav. 39(2), 145–151 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  45. Shweta, Mishra, A..K., Sharma, U..K.: Traversable wormhole modelling with exponential and hyperbolic shape functions in \(F(R,T)\) framework. Int. J. Mod. Phys. A 35(25), 2050149 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  46. Mishra, A.K., Dubey, V.C., Sharma, U.K.: Two different shape functions for wormholes in \(f(R)\) theory with non-commutative geometry and Lorentzian distribution. Int. J. Geom. Methods Phys. 17(11), 2050155 (2020)

    Article  MathSciNet  Google Scholar 

  47. Mishra, A.K., Sharma, U.K.: A new shape function for wormholes in \(f(R)\) gravity and general relativity.(2020). arXiv preprint arXiv:2003.00298

  48. Moraes, P.H.R.S., Sahoo, P.K., Kulkarni, S.S., Agarwal, S.: An exponential shape function for wormholes in modified gravity. Chin. Phys. Lett. 36, 120401 (2019)

    Article  ADS  Google Scholar 

  49. Parsaei, F., Rastgoo, S.: Wormhole solutions with a polynomial equation-of-state and minimal violation of the null energy condition. Eur. Phys. J. C 80(5), 366 (2020)

    Article  ADS  Google Scholar 

  50. Copeland, E.J., Sami, M., Tsujikawa, S.: Dynamics of dark energy. Int. J. Mod. Phys. D 15, 1753–1936 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  51. Dixit, A., Sharma, U.K., Pradhan, A.: Tsallis holographic dark energy in FRW universe with time varying deceleration parameter. New Astron. 70, 101281 (2019)

    Article  Google Scholar 

  52. Visser, M., Barcelo, C.: Energy conditions and their cosmological implications. Cosmo 99, 98–112 (2000)

    Google Scholar 

  53. Visser, M.: Energy conditions in the epoch of galaxy formation. Science. 276, 88–90 (1997)

    Article  ADS  Google Scholar 

  54. Moraes, P.H.R.S., Sahoo, P.K.: The simplest non-minimal matter-geometry coupling in the \(f (R, T)\) cosmology. Eur. Phys. J. C 77(7), 480 (2017)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The author U. K. Sharma thanks the IUCAA, Pune, India for awarding the visiting associateship. The authors are also very much thankful to the learned referee for his/her constructive suggestions which helped to improve the quality of paper in present form.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ambuj Kumar Mishra.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, U.K., Mishra, A.K. Wormholes Within the Framework of \(f(R, T)=R+\alpha R^2+\lambda T\) Gravity. Found Phys 51, 50 (2021). https://doi.org/10.1007/s10701-021-00457-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10701-021-00457-6

Keywords

Navigation