Abstract
In the seminal works from Santos and Gozalo (Europhys Lett 45:418, 1999) and Marletto and Vedral (Phys Rev Lett 125:040401, 2020), it is shown how the Aharonov–Bohm effect can be described as the result of an exchange of virtual photons between the solenoid and the quantum charged particle along its propagation through the interferometer, where both the particle and the solenoid interact locally with the quantum electromagnetic field. This interaction results in a local and gauge-independent phase generation for the particle propagation in each path of the interferometer. Here we improve the cited treatments by using the quantum electrodynamics formalism in the Lorentz gauge, with a manifestly gauge-independent Hamiltonian for the interaction and the presence of virtual longitudinal photons. Only with this more complete and gauge-independent treatment it is possible to justify the acquired phases for interferometers with arbitrary geometries. We also extend the results to the electric version of the Aharonov–Bohm effect. Finally, we propose an experiment that could test the locality of the Aharonov–Bohm phase generation.
Similar content being viewed by others
References
Ehrenberg, W., Siday, R.E.: The refractive index in electron optics and principles of dynamics. Proc. Phys. Soc. B 62, 8 (1949)
Aharonov, Y., Bohm, D.: Significance of electromagnetic potentials in the quantum theory. Phys. Rev. 115, 485 (1959)
Chambers, R.G.: Shift of and electron interference pattern by enclosed magnetic flux. Phys. Rev. Lett. 5, 3 (1960)
Webb, R.A., Washburn, S., Umbach, C.P., Laibowitz, R.B.: Observation of h/e Aharonov-Bohm oscillations in normal-metal rings. Phys. Rev. Lett. 54, 2696 (1985)
Tonomura, A., et al.: Evidence for Aharonov-Bohm effect with magnetic field completely shielded from electron wave. Phys. Rev. Lett. 56, 792 (1986)
Peshkin, M., Tonomura, A.: Lecture Notes in Physics, vol. 340. Springer, New York (1989)
Bachtold, A., et al.: Aharonov-Bohm oscillations in carbon nanotubes. Nature 397, 673 (1999)
Peng, H., et al.: Aharonov-Bohm interference in topological insulator nanoribbons. Nat. Mater. 9, 225 (2010)
Liebowitz, B.: Significance of the Aharonov-Bohm effect. Nuovo Cimento 38, 932 (1965)
Boyer, T.H.: Classical electromagnetic deflections and lag effects associated with quantum interference pattern shifts: considerations related to the Aharonov-Bohm effect. Phys. Rev. D 8, 1679 (1973)
Boyer, T.H.: Semiclassical explanation of the Matteucci-Pozzi and Aharonov-Bohm phase shifts. Found. Phys. 32, 41 (2002)
Peshkin, M.: The Aharonov-Bohm effect: why it cannot be eliminated from quantum mechanics. Phys. Rep. 80, 375 (1981)
Kang, K.: Aharonov-Bohm effect, local field interaction, and Lorentz invariance. arXiv:1308.2093
Saldanha, P.L.: Alternative expression for the electromagnetic Lagrangian. Braz. J. Phys. 46, 316 (2016)
Vaidman, L.: Role of potentials in the Aharonov-Bohm effect. Phys. Rev. A 86, 040101(R) (2012)
Pearle, P., Rizzi, A.: Quantum-mechanical inclusion of the source in the Aharonov-Bohm effects. Phys. Rev. A 95, 052123 (2017)
Pearle, P., Rizzi, A.: Quantized vector potential and alternative views of the magnetic Aharonov-Bohm phase shift. Phys. Rev. A 95, 052124 (2017)
Aharonov, Y., Cohen, E., Rohrlich, D.: Comment on “Role of potentials in the Aharonov-Bohm effect”. Phys. Rev. A 92, 026101 (2015)
Vaidman, L.: Reply to “Comment ‘on Role of potentials in the Aharonov-Bohm effect’ ”. Phys. Rev. A 92, 026102 (2015)
Aharonov, Y., Cohen, E., Rohrlich, D.: Nonlocality of the Aharonov-Bohm effect. Phys. Rev. A 93, 042110 (2016)
Kang, K.: Proposal for locality test of the Aharonov-Bohm effect via Andreev interferometer without a loop. J. Korean Phys. Soc. 71, 565 (2017)
Marletto, C., Vedral, V.: Aharonov-Bohm phase is locally generated like all other quantum phases. Phys. Rev. Lett. 125, 040401 (2020)
Santos, E., Gonzalo, I.: Microscopic theory of the Aharonov-Bohm effect. Europhys. Lett. 45, 418 (1999)
Choi, M.Y., Lee, M.: Exact quantum description of the Aharonov-Bohm effect. Curr. Appl. Phys. 4, 267 (2004)
Benliang Li, B., Hewak, D.W., Wang, Q.J.: The transition from quantum field theory to one-particle quantum mechanics and a proposed interpretation of Aharonov-Bohm effect. Foud. Phys. 48, 837 (2018)
Caprez, A., Barwick, B., Batelaan, H.: Macroscopic test of the Aharonov-Bohm effect. Phys. Rev. Lett. 99, 210401 (2007)
Shelankov, A.L.: Magnetic force exerted by the Aharonov-Bohm line. Europhys. Lett. 43, 623 (1998)
Berry, M.V.: Aharonov-Bohm beam deflection: Shelankov’s formula, exact solution, asymptotics and an optical analogue. J. Phys. A 32, 5627 (1999)
Becker, M., Guzzinati, G., Béché, A., Verbeeck, J., Batelaan, H.: Asymmetry and non-dispersivity in the Aharonov-Bohm effect. Nat. Comm. 10, 1700 (2019)
Cohen-Tannoudji, C., Dupont-Roc, J., Grynberg, G.: Photons and Atoms. Wiley, New York (1989)
Mandel, L., Wolf, E.: Optical Coherence and Quantum Optics. Cambridge, New York (1995)
Cohen-Tannoudji, C., Diu, B., Laloe, F.: Quantum Mechanics, 2nd edn. Wiley, Paris (1977)
Jackson, J.D.: Classical Electrodynamics, 3rd edn. Wiley, New York (1999)
Afanasiev, G.N.: Topological Effects in Quantum Mechanics. Kluwer Academic Publishers, Amsterdam (1999)
Matteucci, G., Pozzi, G.: New diffraction experiment on the electrostatic Aharonov-Bohm effect. Phys. Rev. Lett. 54, 2469 (1985)
Van Oudenaarden, A., Devoret, M.H., Nazarov, Y.V., Mooij, J.E.: Magneto-electric Aharonov-Bohm effect in metal rings. Nature 391, 768 (1998)
Acknowledgements
The author acknowledges Chiara Marletto, Vlatko Vedral, and Ana Júlia Mizher for very useful discussions. This work was supported by the Brazilian agencies CNPq, CAPES, and FAPEMIG.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Saldanha, P.L. Local Description of the Aharonov–Bohm Effect with a Quantum Electromagnetic Field. Found Phys 51, 6 (2021). https://doi.org/10.1007/s10701-021-00414-3
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s10701-021-00414-3