Skip to main content
Log in

On the Quantum Mechanical Measurement Process

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

The quantum mechanical measurement process is analyzed by means of an explicit generic model describing the interaction between object and measuring device. The solution of the Schrödinger equation for the whole system reflects the ‘collapse’ of the object wave function. A necessary condition is a sufficiently sharply peaked initial measurement device wave function, which is guaranteed in its classical limit. With this assumption, it is in particular proven that the off-diagonal elements of the object density matrix vanish. This study therefore shows the reduction of the object state to be a consequence of Hamiltonian evolution of the total system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. de Ronde, C.: The (quantum) measurement problem in classical mechanics. arXiv:2001.00241.v1(2020)

  2. van Kampen, N.G.: Ten theorems about quantum mechanical measurements. Physica A 153, 97 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  3. van Kampen, N.G.: Stochastic Processes in Physics and Chemistry, Chapter XVII, 3rd edn. Elsevier, North-Holland (2007)

    Google Scholar 

  4. Englert, B.-G.: On quantum theory. Eur. Phys. J. D 67, 238 (2013)

    Article  ADS  Google Scholar 

  5. von Neumann, J.: Mathematical Foundations of Quantum Mechanics. Princeton University Press, Princeton, N.J. (1955)

    MATH  Google Scholar 

  6. Pokorny, F., Zhang, C., Higgins, G., Cabello, A., Kleinmann, M., Hennrich, M.: Tracking the dynamics of an ideal quantum measurement. Phys. Rev. Lett. 124, 080401 (2020)

    Article  ADS  Google Scholar 

  7. Gaveau, B., Schulman, L.S.: Model apparatus for quantum measurements. J. Stat. Phys. 58, 1209 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  8. Mello, P.A.: The von Neumann model of measurement in quantum mechanics. arXiv:1311.7649 [quant-phys] (2013)

  9. Talkner, P., Hänggi, P.: Aspects of quantum work. Phys. Rev. E 93, 022131 (2016)

    Article  ADS  Google Scholar 

  10. Tamir, B., Cohen, E.: Introduction to weak measurements and weak values. Quanta 2, 7 (2013)

    Article  Google Scholar 

  11. Kastner, R.E.: Demystifying weak measurements. Found. Phys. 47, 697 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  12. Merzbacher, E.: Quantum Mechanics, 2nd edn. Wiley, New York (1970)

    MATH  Google Scholar 

  13. Davydov, A.S.: Quantum Mechanics, 2nd edn. Pergamon Press, Oxford (1976)

    Google Scholar 

  14. Cohen, E.: What weak measurements and weak values really mean: reply to Kastner. Found. Phys. 47, 1261 (2017)

    Article  ADS  Google Scholar 

  15. Svensson, B.E.Y.: What is a quantum-mechanical “weak value” the value of? Found. Phys. 43, 1193 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  16. Matzkin, A.: Weak values and quantum properties. Found. Phys. 49, 298 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  17. Cohen-Tannoudji, C., Diu, B., Laloë, F.: Quantum Mechanics, vol. 1. Hermann and Wiley-VCH, Paris (2005)

    MATH  Google Scholar 

  18. Lerner, P.B.: Foundations of quantum mechanics according to my teachers. arXiv:2001.05569.v1 [quant-phys] (2020)

  19. Dirac, P.A.M.: The Principles of Quantum Mechanics, 4th edn. Oxford University Press, London (1958)

    MATH  Google Scholar 

  20. Schlosshauer, M.: Quantum decoherence. Phys. Rep. 831, 1 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  21. Lopes Oliveira, L.F., Rossi, Jr. R., Bosco de Magelhães A.R., Peixoto de Faria J.G., Nemes M.C.: Continuous monitoring of dynamical systems and master equations. Phys. Lett. A 376, 1786 (2012)

  22. Oliveira, A.C.: Classical limit of quantum mechanics induced by continuous measurements. Physica A 393, 655 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  23. Zeh, H.D.: On the interpretation of measurement in quantum theory. Found. Phys. 1, 69 (1970)

    Article  ADS  Google Scholar 

  24. Zurek, W.H.: Pointer basis of quantum apparatus: into what mixture does the wave packet collapse? Phys. Rev. D 24, 1516 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  25. Zeh, H.D.: Basic Concepts and their interpretation. Chapter 2 of Giulini D., Joos E., Kiefer C., Kupsch J., Stamatescu I.-O. and Zeh H.D.: Decoherence and the Appearance of a Classical World in Quantum Theory, 2nd edn. (Springer-Verlag, 2003); arXiv:quant-ph/9506020v3 (2002)

  26. Zeh, H.D.: Toward a quantum theory of observation. Found. Phys. 3, 109 (1973); arXiv:quant-ph/0306151v1 (2003)

  27. Schlosshauer, M.: Decoherence, the measurement problem, and interpretations of quantum mechanics. Rev. Mod. Phys. 76, 1267 (2004)

    Article  ADS  Google Scholar 

  28. Adler, S.L.: Why decoherence has not solved the measurement problem: a response to P.W. Anderson. Studies in History and Philosophy of Modern Physics 34, 135 (2003)

  29. Bhattacharya T., Habib S. and Jacobs K.: The emergence of classical dynamics in a quantum world. arXiv:quant-ph/0407096v1 (2004)

  30. Bassi, A., Ghirardi, G.C.: Dynamical reduction models. Phys. Rep. 379, 257 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  31. Bassi, A., Lochan, K., Satin, S., Singh, T.P., Ulbricht, H.: Models of wave-function collapse, underlying theories, and experimental tests. Rev. Mod. Phys. 85, 471 (2013)

    Article  ADS  Google Scholar 

  32. Wiebe, N., Ballentine, L.E.: Quantum mechanics of Hyperion. Phys. Rev. A 72, 022109 (2005)

    Article  ADS  Google Scholar 

  33. Ballentine, L.: Classicality without decoherence: a reply to Schlosshauer. Found. Phys. 38, 916 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  34. Angelo, R.M.: Low-resolution measurements induced classicality. arXiv:0809.4616v1 [quant-ph] (2008)

Download references

Acknowledgements

Part of this research has been supported by Research Cooperation Funds (SMO, Samenwerkingsmiddelen Onderzoek) Netherlands. Additional support by the Quantum Technology Department of TNO is acknowledged as well. The author also thanks H. Polinder and M.J. Woudstra for a critical reading of the manuscript and A.J. de Jong for inspiring discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. W. L. Naus.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naus, H.W.L. On the Quantum Mechanical Measurement Process. Found Phys 51, 1 (2021). https://doi.org/10.1007/s10701-021-00404-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10701-021-00404-5

Keywords

Navigation