Abstract
Any realist interpretation of quantum theory must grapple with the measurement problem and the status of statevector collapse. In a nocollapse approach, measurement is typically modeled as a dynamical process involving decoherence. We describe how the minimal modal interpretation closes a gap in this dynamical description, leading to a complete and consistent resolution to the measurement problem and an effective form of state collapse. Our interpretation also provides insight into the indivisible nature of measurement—the fact that you can’t stop a measurement partway through and uncover the underlying ‘ontic’ dynamics of the system in question. Having discussed the hidden dynamics of a system’s ontic state during measurement, we turn to more general forms of opensystem dynamics and explore the extent to which the details of the underlying ontic behavior of a system can be described. We construct a space of ontic trajectories and describe obstructions to defining a probability measure on this space.
This is a preview of subscription content, log in to check access.
Notes
 1.
The Ghirardi–Rimini–Weber interpretation is an example of such an approach [3].
 2.
An indepth discussion of various types of modal interpretations and their shortcomings is covered in [10].
 3.
We recognize that there are foundational questions about the precise, rigorous meaning of probability. We wish to disentangle and set aside these deep mysteries from what we take to be an independent set of foundational questions in quantum theory. Thus, we merely require that our probabilities obey Kolmogorov’s axioms, and we remain agnostic about the metaphysical meaning of these probabilities. As we shall see, operationally, the probabilities that define our epistemic states line up with the empirical outcomes one would expect.
 4.
As we will explain later, objective uncertainty can be characterized as the minimal amount of uncertainty that any observer can attain regarding the state of the system without perturbing the system. This kind of uncertainty arises fundamentally from entanglement.
 5.
The notion of systemcentric ontology can also be thought of as a ‘localization’ of ontology that is reminiscent of the way in which general relativity localizes inertial reference frames. By contrast, an interpretation like manyworlds expands the universal state vector in a preferred basis and defines the ontology of all systems with respect to that seemingly arbitrary choice.
 6.
See [11] for a more detailed discussion.
 7.
Our interpretation’s dynamics are more restricted and arise in a different manner from those developed by Bacciagaluppi and Dickson in [18].
 8.
The minimal modal interpretation can thus be thought of as a hiddenvariables interpretation where the actual ontic state of the system plays the role of a hidden variable.
 9.
This observation was made in earlier work, such as [19].
 10.
The detailed behavior of these functions depends on how one models the coupling between the systems. Explicit realizations have been studied in [20] and in greater generality in [21]. The latter paper demonstrates that a spin system interacting with an environment will undergo decoherence with approximately Gaussian damping of coherence terms.
 11.
Deviations from the Born rule arise when measurements are modeled as a decoherencetype quantum process involving a measurement apparatus and environment of finite size and an interaction of finite duration. Such deviations are not a unique feature of the minimal modal interpretation, but also occur in other interpretive frameworks, like the manyworlds interpretation, in which decoherence plays a central role.
 12.
We will address the more general situation in which correlations always exist in Sect. 4.6.
 13.
Another area in which such nonprobabilistic uncertainty may arise is cosmology. Models exhibiting eternal inflation generically feature causally disconnected regions that conceivably manifest different phases of an underlying physical theory with different empirical properties, such as different masses for elementary particles and different interaction couplings between them. There is no obvious way to define a measure on these empirical attributes. Many attempts have been made and will likely continue, but the possibility of a more fundamental type of uncertainty should not be dismissed.
 14.
Abrams and Lloyd argue in [34] that the freedom to implement arbitrarily chosen nonlinear dynamics would lead to surprising implications for solving NPcomplete problems. We emphasize that the nonlinear dynamics here is not fully under experimental control.
 15.
From time to time, one reads of proposals that linear opensystem dynamics can, in fact, be defined even in the presence of initial subsystem–environment correlations. However, because any such dynamical map has the specific correlations of a particular initial density matrix built into its definition, the dynamical map manifestly cannot be linear in the sense that it can take as inputs general linear combinations of arbitrary initial density matrices.
References
 1.
Dirac, P.A.M.: The Principles of Quantum Mechanics, 2nd edn. Oxford University Press, Oxford (1930)
 2.
J. von Neumann, Beyer, R.T.: (translator). Mathematical Foundations of Quantum Mechanics, 1st edn. Princeton University Press, Princeton (1955)
 3.
Ghirardi, G.C., Rimini, A., Weber, T.: Unified dynamics for microscopic and macroscopic systems. Phys. Rev. D 34(2), 470–491 (1986). http://www.link.aps.org/pdf/10.1103/PhysRevD.34.470, https://doi.org/10.1103/PhysRevD.34.470
 4.
Bohm, D.: A suggested interpretation of the quantum theory in terms of “hidden” variables. I. Phys. Rev. 85, 166–179 (1952). http://link.aps.org/doi/10.1103/PhysRev.85.166. https://doi.org/10.1103/PhysRev.85.166
 5.
Bohm, D.: A suggested interpretation of the quantum theory in terms of “hidden” variables. II. Phys. Rev. 85, 180–193, 1952. http://link.aps.org/doi/10.1103/PhysRev.85.180. https://doi.org/10.1103/PhysRev.85.180
 6.
DeWitt, B. S.: Quantum mechanics and reality. Phys. Today 23(9), 30–35 (1970). http://scitation.aip.org/content/aip/magazine/physicstoday/article/23/9/10.1063/1.3022331. https://doi.org/10.1063/1.3022331
 7.
Everett H. III: Relative state formulation of quantum mechanics. Rev. Mod. Phys. 29(3), 454–462 (1957). http://link.aps.org/doi/10.1103/RevModPhys.29.454. https://doi.org/10.1103/RevModPhys.29.454
 8.
Albert, D.Z.: Quantum Mechanics and Experience, 1st edn. Harvard University Press, Harvard (1994)
 9.
Brown, H.R., Wallace, D.: Solving the measurement problem: de Broglie–Bohm loses out to Everett. Found. Phys. (2005). http://dx.doi.org/10.1007/s1070100420093. arXiv:quantph/0403094. https://doi.org/10.1007/s1070100420093
 10.
Vermaas, P.E.: A Philosopher’s Understanding of Quantum Mechanics: Possibilities and Impossibilities of a Modal Interpretation. Cambridge University Press, Cambridge (1999)
 11.
Barandes, J.A., Kagan, D.: The Minimal Modal Interpretation of Quantum Theory. arXiv:quantph/1405.6755
 12.
Knight, F.: Risk, Uncertainty, and Profit. Hart, Schaffner and Marx. Houghton Mifflin Company, Boston (1921)
 13.
Aaronson, S.: The Ghost in the Quantum Turing Machine. arXiv:quantph/1306.0159
 14.
Krips, H.P.: Two Paradoxes in Quantum Mechanics. Philos. Sci. 36(2), 145–152 (1969)
 15.
Vermaas, P.E., Dieks, D.: The modal interpretation of quantum mechanics and its generalization to density operators. Found. Phys. 25(1), 145–158 (1995). http://link.springer.com/article/10.1007/BF02054662
 16.
Dickson, W.M., Clifton, R.: Lorentzinvariance in modal interpretations. In: The Modal Interpretation of Quantum Mechanics, pp. 9–47. Springer, New York, 1998. http://link.springer.com/chapter/10.1007/9789401150842_2
 17.
Myrvold, W.C.: Modal interpretations and relativity. Found. Phys. 32(11), 1773–1784 (2002). arXiv:quantph/0209109. https://doi.org/10.1023/A:1021406924313
 18.
Bacciagaluppi, G., Dickson, M.: Dynamics for modal interpretations. Found. Phys. 29(8), 1165–1201 (1999)
 19.
Bacciagaluppi, G., Hemmo, M.: Modal interpretations, decoherence, and measurements. Stud. Hist. Philos. Sci. Part B: Stud. Hist. Philos. Mod. Phys. 27(3), 239–277 (1996). https://www.sciencedirectcom/science/article/pii/S1355219896000020. https://doi.org/10.1016/S13552198(96)000020
 20.
Zurek, W.H.: Environmentinduced superselection rules. Phys. Rev. D 26, 1862–1880 (1982). https://journals.aps.org/prd/abstract/10.1103/PhysRevD.26.1862. https://doi.org/10.1103/PhysRevD.26.1862
 21.
Cucchietti, F.M., Paz, J.P., Zurek, W.H.: Decoherence from spin environments. Phys. Rev. A 72(5), 052113 (2005). https://journals.aps.org/pra/abstract/10.1103/PhysRevA.72.052113. https://doi.org/10.1103/PhysRevA.72.052113
 22.
Bell, J.S.: On the Einstein–Podolsky–Rosen Paradox. Physics 1(3), 195–200 (1964)
 23.
Clauser, J.F., Horne, M.A., Shimony, A., Holt, R.A.: Proposed experiment to test local hiddenvariable theories. Phys. Rev. Lett. 23, 880–884 (1969). http://link.aps.org/doi/10.1103/ PhysRevLett.23.880. https://doi.org/10.1103/PhysRevLett.23.880
 24.
Greenberger, D.M., Horne, M.A., Zeilinger, A.: Going beyond Bell’s theorem. In: Bell’s Theorem, Quantum Theory and Conceptions of the Universe, Fundamental Theories of Physics, pp. 69–72. Springer, New York (1989). arXiv:0712.0921. https://doi.org/10.1007/9789401708494_10
 25.
Mermin, N.D.: Quantum mysteries revisited. Am. J. Phys. 58(8), 731–734 (1990). https://doi.org/10.1119/1.16503
 26.
Hardy, L.: Quantum mechanics, local realistic theories, and Lorentzinvariant realistic theories. Phys. Rev. Lett. 68, 2981–2984 (1992). http://link.aps.org/doi/10.1103/PhysRevLett.68.2981. https://doi.org/10.1103/PhysRevLett.68.2981
 27.
Hardy, L.: Nonlocality for two particles without inequalities for almost all entangled states. Phys. Rev. Lett., 71, 1665–1668 (1993). http://link.aps.org/doi/10.1103/PhysRevLett.71.1665. https://doi.org/10.1103/PhysRevLett.71.1665
 28.
Stelmachovic, P., Buzek, V.: Dynamics of open quantum systems initially entangled with environment: beyond the Kraus representation. Phys. Rev. A 64, 062106 (2001). https://arxiv.org/abs/quantph/0108136. https://doi.org/10.1103/PhysRevA.64.062106
 29.
Rivas, A., Huelga, S.: Open quantum systems: an introduction. SpringerBriefs Phys (2012). https://arxiv.org/abs/1104.5242. https://doi.org/10.1007/9783642233548
 30.
Lindblad, G.: On the generators of quantum dynamical semigroups. Commun. Math. Phys. 48(2), 119–130 (1976). http://dx.doi.org/10.1007/BF01608499. https://doi.org/10.1007/BF01608499
 31.
Joos, E. (ed.): Decoherence and the Appearance of a Classical World in Quantum Theory. Springer, New York (2003)
 32.
Hornberger, K.: Introduction to decoherence theory. In: Entanglement and Decoherence, Springer Lecture Notes in Physics, vol. 768, pp. 221–276, 2009. https://arxiv.org/abs/quantph/0612118. https://doi.org/10.1007/9783540881698_5 Lindblad (ref 218 big p)
 33.
Esposito, M., Mukamel, S.: Fluctuation theorems for quantum master equations. Phys. Rev. E 73(4), 046129 (2006). http://link.aps.org/doi/10.1103/PhysRevE.73.046129. arXiv:condmat/0602679. https://doi.org/10.1103/PhysRevE.73.046129
 34.
Abrams, D.S., Lloyd, S.: Nonlinear quantum mechanics implies polynomialtime solution for NPcomplete and #P problems. Phys. Rev. Lett. 81, 3992–3995 (1998). https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.81.3992. https://doi.org/10.1103/PhysRevLett.81.3992
Acknowledgements
D. K. thanks Gaurav Khanna, Darya Krym, John Estes, and Paul CaddenZimansky for many useful discussions. D. K. has been supported in part by FQXi minigrant Observers in Quantum Theory#10610. J. A. B. would like to acknowledge helpful conversations with David Albert, Ned Hall, and Jeremy Butterfield. We are both grateful to Brian Greene and Allan Blaer for many discussions and insightful suggestions.
Author information
Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Quantum Conditional Probabilities
Quantum Conditional Probabilities
In this appendix, we motivate the formula (7) for the quantum conditional probabilities at the heart of the minimal modal interpretation. We start with a parent system \(W=Q_{1}+Q_{2}\) partitioned into subsystems \(Q_{1}\) and \(Q_{2}\) that are mutually disjoint. The reduced density matrix of the subsystem \(Q_{1}\) at time \(t'\) is given by the partial trace
The reduced density matrix of the subsystem \(Q_{2}\) is similarly defined. At any given time t, the density matrices of W and the subsystems \(Q_{1}\) and \(Q_{2}\) can be expanded in the bases of their respective eigenprojectors \(\left\{ \hat{P}_{W}\left( w;t\right) \right\} _{w}\), \(\left\{ \hat{P}_{Q_{1}}\left( i_{1};t\right) \right\} _{i_{1}},\) and \(\left\{ \hat{P}_{Q_{2}}\left( i_{2};t\right) \right\} _{i_{2}}\):
According to the minimal modal interpretation, the probability of the subsystem \(Q_{1}\) being in the ontic state \(\Psi _{i_{1}}\left( t'\right)\) at time \(t'\) is
This expression can be rewritten as a formula that explicitly involves the disjoint subsystem \(Q_{2}\) and the parent system W by expanding the trace to encompass the entire parent system’s Hilbert space and inserting an identity operator for the Hilbert space of the subsystem \(Q_{2}\):
The identity operator \(\hat{1}_{Q_{2}}\) can be expanded in terms of the eigenprojectors \(\hat{P}_{Q_{2}}\left( i_{2};t'\right)\),
and this summation can be pulled out of the trace to yield
We now suppose that the parent system’s evolution is wellapproximated by a linear CPTP map \(\mathcal {E}_{W}^{t'\leftarrow t}\). Linearity implies that
thereby allowing us to rewrite (56) as
This last expression can be interpreted as a Bayesian propagation formula in its familiar sense,
provided that we adopt Axiom 4 and make the identification
Our last step is not strictly necessary—we choose to interpret the trace formula in (60) as a conditional probability. In keeping with the minimalist spirit of our interpretation of quantum theory, note that we have constructed this new set of conditional probabilities out of standard ingredients without introducing any exotic elements or assumptions.
The conditional probabilities defined by (60) can be generalized to the case of a parent system \(W=Q_{1}+\cdots +Q_{n}\) consisting of n disjoint subsystems \(Q_{1},\ldots ,Q_{n}\) by replacing \(Q_{2}\rightarrow Q_{2}+\cdots +Q_{n}\) and \(\hat{1}_{Q_{2}}\rightarrow \hat{1}_{Q_{2}}\otimes \cdots \otimes \hat{1}_{Q_{n}}\). Following steps analogous to those detailed above for the bipartite case, one derives the nsubsystem joint conditional probabilities
Of course, in order for these quantities to qualify as proper conditional probabilities, they should be nonnegative and sum to unity. What follows is a proof that our quantum conditional probabilities indeed have these properties.

1.
Nonnegativity: The tensorproduct operator
$$\begin{aligned} \hat{P}_{Q_{1}}\left( i_{1};t'\right) \otimes \cdots \otimes \hat{P}_{Q_{n}}\left( i_{n};t'\right) \end{aligned}$$(62)and the timeevolved projection operator \(\mathcal {E}_{W}^{t'\leftarrow t}\left\{ \hat{P}_{W}\left( w;t\right) \right\}\) are both manifestly positive semidefinite. If we call the first positive semidefinite operator \(\hat{A}\) and the second \(\hat{B}\), then \(\sqrt{\hat{A}}\) and \(\sqrt{\hat{B}}\) are also positive semidefinite and we have
$$\begin{aligned} \text {Tr}\left[ \hat{A}\hat{B}\right]= & {} \text {Tr}\left[ \sqrt{\hat{A}}\sqrt{\hat{A}}\sqrt{\hat{B}}\sqrt{\hat{B}}\right] =\text {Tr}\left[ \sqrt{\hat{B}}\sqrt{\hat{A}}\sqrt{\hat{A}}\sqrt{\hat{B}}\right] \\= & {} \text {Tr}\left[ \left( \sqrt{\hat{A}}\sqrt{\hat{B}}\right) ^{\dagger }\left( \sqrt{\hat{A}}\sqrt{\hat{B}}\right) \right] \ge 0. \end{aligned}$$Therefore, our conditional probabilities are nonnegative, as claimed:
$$\begin{aligned} p_{Q_{1},\ldots ,Q_{n}W}\left( i_{1},\ldots ,i_{n};t'w;t\right) \ge 0. \end{aligned}$$(63) 
2.
Unit measure: Taking a fixed parentsystem ontic state w and summing over all the final subsystem states \(i_{1},\ldots ,i_{n}\), we find
$$\begin{aligned} \mathop {\sum }\limits _{{i_{1},\ldots ,i_{n}}}p_{Q_{1},\ldots ,Q_{n}W}\left( i_{1},\ldots ,i_{n};t'w;t\right)&=\mathop {\sum }\limits _{{i_{1},\ldots ,i_{n}}}\text {Tr}_{W}\left[ \left( \hat{P}_{Q_{1}}\left( i_{1};t'\right) \otimes \cdots \otimes \hat{P}_{Q_{n}}\left( i_{n};t'\right) \right) \right. \\&\quad \left. \mathcal {E}_{W}^{t'\leftarrow t}\left\{ \hat{P}_{W}\left( w;t\right) \right\} \right] \\&=\text {Tr}_{W}\left[ \left( \hat{1}_{Q_{1}}\otimes \cdots \otimes \hat{1}_{Q_{n}}\right) \mathcal {E}_{W}^{t'\leftarrow t}\left\{ \hat{P}_{W}\left( w;t\right) \right\} \right] \\&=\text {Tr}_{W}\left[ \mathcal {E}_{W}^{t'\leftarrow t}\left\{ \hat{P}_{W}\left( w;t\right) \right\} \right] \\&=1. \end{aligned}$$
Rights and permissions
About this article
Cite this article
Barandes, J.A., Kagan, D. Measurement and Quantum Dynamics in the Minimal Modal Interpretation of Quantum Theory. Found Phys 50, 1189–1218 (2020). https://doi.org/10.1007/s10701020003740
Received:
Accepted:
Published:
Issue Date:
Keywords
 Quantum theory
 Quantum mechanics
 Manybody quantum systems
 Foundations of physics
 Quantum foundations
 Decoherence
 Interpretations of quantum theory
 Quantum dynamics
 Quantum measurement problem