Bjorken, J.D., Drell, S.D.: Relativistic Quantum Fields. McGraw-Hill, New York (1965)
MATH
Google Scholar
Nash, C.: Relativistic Quantum Fields. Academic Press, New York (1978)
Google Scholar
Mandl, F., Shaw, G.: Quantum Field Theory. Wiley, New York (1993)
MATH
Google Scholar
Greiner, W., Reinhardt, J.: Quantum Electrodynamics. Springer, Berlin (1994)
MATH
Google Scholar
Peskin, M.E., Schroeder, D.V.: An Introduction to Quantum Field Theory. Addison-Wesley, Boston (1995)
Google Scholar
Maggiore, M.: A Modern Introduction to Quantum Field Theory. Oxford University Press, Oxford (2005)
MATH
Google Scholar
Itzykson, C., Zuber, J.-B.: Quantum Field Theory. Dover, New York (2006)
MATH
Google Scholar
Huang, K.: Quantum Field Theory: From Operators to Path Integrals. Wiley, New York (2010)
Google Scholar
Feynman, R.P.: Space-time approach to quantum electrodynamics. Phys. Rev. 76, 769–789 (1949)
ADS
MathSciNet
MATH
Google Scholar
Tomonaga, S.: On a relativistically invariant formulation of the quantum theory of wave fields. Prog. Theor. Phys. 1, 27–42 (1946)
ADS
MathSciNet
MATH
Google Scholar
Schwinger, J.: Quantum electrodynamics. II. Vacuum polarization and self-energy. Phys. Rev. 75, 651–679 (1949)
ADS
MathSciNet
MATH
Google Scholar
Schwinger, J.: On gauge invariance and vacuum polarization. Phys. Rev. 82, 664–679 (1951)
ADS
MathSciNet
MATH
Google Scholar
Pauli, W., Villars, F.: On the invariant regularization in relativistic quantum theory. Rev. Mod. Phys. 21, 434–444 (1949)
ADS
MathSciNet
MATH
Google Scholar
Dyson, F.J.: The radiation theories of Tomonaga, Schwinger, and Feynman. Phys. Rev. 75, 486–502 (1949)
ADS
MathSciNet
MATH
Google Scholar
Gell-Mann, M., Low, F.E.: Quantum electrodynamics at small distances. Phys. Rev. 95, 1300–1312 (1954)
ADS
MathSciNet
MATH
Google Scholar
’t Hooft, G., Veltman, M.: Regularization and renormalization of gauge fields. Nucl. Phys. B 44, 189–213 (1972)
ADS
MathSciNet
Google Scholar
Dirac, P.A.M.: The evolution of the physicist’s picture of nature. Sci. Am. 208, 45–53 (1963)
ADS
Google Scholar
Gol’fand, Y.A.: On the introduction of an “elementary length” in therRelativistic theory of elementary particles. J. Exp. Theor. Phys. 10, 356–360 (1960)
Google Scholar
Kadyshevskii, V.G.: On the theory of quantization of space-time. J. Exp. Theor. Phys. 14, 1340–1346 (1962)
MathSciNet
Google Scholar
Gol’fand, Y.A.: Quantum field theory in constant curvature p-space. J. Exp. Theor. Phys. 16, 184–191 (1963)
ADS
MathSciNet
MATH
Google Scholar
Volobuev, I.P., Kadyshevskii, V.G., Mateev, M.D., Mir-Kasimov, R.M.: Equations of motion for scalar and spinor fields in a four-dimensional non-euclidean momentum space. Theor. Math. Phys. 40, 800–807 (1979)
MathSciNet
Google Scholar
Chizhov, M.V., Donkov, A.D., Ibadov, R.M., Kadyshevsky, V.G., Mateev, M.D.: Quantum field theory and a new universal high-energy scale. Nuovo Cim. A 87, 350–372 (1985)
ADS
Google Scholar
Born, M.: A suggestion for unifying quantum theory and relativity. Proc. R. Soc. Lond. A 165, 291–303 (1938)
ADS
MATH
Google Scholar
Born, M.: Reciprocity theory of elementary particles. Rev. Mod. Phys. 21, 463–473 (1949)
ADS
MATH
Google Scholar
Castro, C.: Some consequences of Born’s reciprocal relativity in phase-spaces. Int. J. Mod. Phys. A 26, 3653–3678 (2011)
ADS
MathSciNet
MATH
Google Scholar
Amelino-Camelia, G., Barcaroli, L., Gubitosi, G., Loret, N.: Dual redshift on Planck-scale-curved momentum spaces. Class. Quantum Grav. 30, 235002 (2013)
ADS
MathSciNet
MATH
Google Scholar
Snyder, H.S.: Quantized space-time. Phys. Rev. 71, 38–41 (1947)
ADS
MathSciNet
MATH
Google Scholar
Yang, C.N.: On quantized space-time. Phys. Rev. 72, 874 (1947)
ADS
MathSciNet
MATH
Google Scholar
Connes, A.: Noncommutative Geometry. Academic Press, New York (1994)
MATH
Google Scholar
Douglas, M.R., Nekrasov, N.A.: Noncommutative field theory. Rev. Mod. Phys. 73, 977–1029 (2001)
ADS
MathSciNet
MATH
Google Scholar
Arzano, M.: Anatomy of a deformed symmetry: field quantization on curved momentum space. Phys. Rev. D 83, 025025 (2011)
ADS
Google Scholar
Majid, S.: Meaning of noncommutative geometry and the Planck scale quantum group. Lect. Notes Phys. 541, 227–276 (2000)
ADS
MathSciNet
MATH
Google Scholar
Amelino-Camelia, G., Freidel, L., Kowalski-Glikman, J., Smolin, L.: Principle of relative locality. Phys. Rev. D 84, 084010 (2011)
ADS
MATH
Google Scholar
Amelino-Camelia, G.: Testable scenario for relativity with minimum length. Phys. Lett. B 510, 255–263 (2001)
ADS
MATH
Google Scholar
Amelino-Camelia, G.: Relativity in spacetimes with short-distance structure governed by an observer-independent (Planckian) length scale. Int. J. Mod. Phys. D 11, 35–59 (2002)
ADS
MathSciNet
MATH
Google Scholar
Freidel, L., Kowalski-Glikman, J., Smolin, L.: 2+1 gravity and doubly special relativity. Phys. Rev. D 69, 044001 (2004)
ADS
MathSciNet
Google Scholar
Kowalski-Glikman, J.: Living in curved momentum space. Int. J. Mod. Phys. A 28, 1330014 (2013)
ADS
MathSciNet
Google Scholar
Alavi, S.A.: Lamb shift and stark effect in simultaneous space-space and momentum-momentum noncommutative quantum mechanics and theta-deformed su(2) algebra. Mod. Phys. Lett. A 22, 377–383 (2007)
ADS
MATH
Google Scholar
Bertolami, O., Leal, P.: Aspects of phase-space noncommutative quantum mechanics. Phys. Lett. B 750, 6–11 (2015)
ADS
MathSciNet
MATH
Google Scholar
Ballesteros, Á., Gubitosi, G., Gutiérrez-Sagredo, I., Herranz, F.J.: Curved momentum spaces from quantum groups with cosmological constant. Phys. Lett. B 773, 47–53 (2017)
ADS
MathSciNet
MATH
Google Scholar
Segal, I.E.: A non-commutative extension of abstract integration. Ann. Math. 57, 401–457 (1953)
MathSciNet
MATH
Google Scholar
Nelson, E.: Notes on non-commutative integration. J. Funct. Anal. 15, 103–116 (1974)
MathSciNet
MATH
Google Scholar
Langmann, E.: Noncommutative integration calculus. J. Math. Phys. 36, 3822–3835 (1995)
ADS
MathSciNet
MATH
Google Scholar
Schrödinger, E.: Space-time Structure. Cambridge University Press, Cambridge (1954)
MATH
Google Scholar
Schouten, J.A.: Ricci-Calculus. Springer-Verlag, New York (1954)
MATH
Google Scholar
Hehl, F.W., McCrea, J.D.: Bianchi identities and the automatic conservation of energy-momentum and angular momentum in general-relativistic field theories. Found. Phys. 16, 267–293 (1986)
ADS
MathSciNet
Google Scholar
Popławski, N.: Intrinsic spin requires gravity with torsion and curvature. arXiv:1304.0047 (2013)
Kibble, T.W.B.: Lorentz invariance and the gravitational field. J. Math. Phys. 2, 212–221 (1961)
ADS
MathSciNet
MATH
Google Scholar
Sciama, D.W.: On the analogy between charge and spin in general relativity. In: Bergmann, P. (ed.) Recent Developments in General Relativity, pp. 415–439. Pergamon, Oxford (1962)
Google Scholar
Sciama, D.W.: The physical structure of general relativity. Rev. Mod. Phys. 36, 463–469 (1964). Erratum, Rev. Mod. Phys. 36, 1103 (1964)
ADS
Google Scholar
Hehl, F.W., von der Heyde, P., Kerlick, G.D., Nester, J.M.: General relativity with spin and torsion: foundations and prospects. Rev. Mod. Phys. 48, 393–416 (1976)
ADS
MathSciNet
MATH
Google Scholar
de Sabbata, V., Gasperini, M.: Introduction to Gravitation. World Scientific, Singapore (1985)
Google Scholar
Nomura, K., Shirafuji, T., Hayashi, K.: Spinning test particles in spacetime with torsion. Prog. Theor. Phys. 86, 1239–1258 (1991)
ADS
MathSciNet
Google Scholar
de Sabbata, V., Sivaram, C.: Spin and Torsion in Gravitation. World Scientific, Singapore (1994)
MATH
Google Scholar
Trautman, A.: Einstein–Cartan theory. In: Francoise, J.-P., Naber, G.L., Tsou, S.T. (eds.) Encyclopedia of Mathematical Physics, vol. 2, pp. 189–195. Elsevier, Amsterdam (2006)
Google Scholar
Landau, L.D., Lifshitz, E.M.: The Classical Theory of Fields. Pergamon, Oxford (1975)
MATH
Google Scholar
Lord, E.A.: Tensors, Relativity and Cosmology. McGraw-Hill, New York (1976)
Google Scholar
Popławski, N.: Classical physics: spacetime and fields. arXiv:0911.0334 (2020)
Bjorken, J.D., Drell, S.D.: Relativistic Quantum Mechanics. McGraw-Hill, New York (1964)
MATH
Google Scholar
Sakurai, J.J.: Advanced Quantum Mechanics. Pearson, London (1967)
Google Scholar
Berestetskii, V.B., Lifshitz, E.M., Pitaevskii, L.P.: Quantum Electrodynamics. Pergamon, Oxford (1983)
Google Scholar
Dyson, F.: Advanced Quantum Mechanics. World Scientific, Singapore (2007)
MATH
Google Scholar
Cartan, É.: Sur une généralisation de la notion de courbure de Riemann et les espaces à torsion. C. R. Acad. Sci. 174, 593–595 (1922)
MATH
Google Scholar
Cartan, É.: Sur les variétés à connexion affine, et la théorie de la relativité généralisée (première partie). Ann. Sci. Éc. Norm. Supér. 40, 325–412 (1923)
MATH
Google Scholar
Cartan, É.: Sur les variétés à connexion affine, et la théorie de la relativité généralisée (première partie) (Suite). Ann. Sci. Éc. Norm. Supér. 41, 1–25 (1924)
MATH
Google Scholar
Cartan, É.: Sur les variétés à connexion affine, et la théorie de la relativité généralisée (deuxième partie). Ann. Sci. Éc. Norm. Supér. 42, 17–88 (1925)
MathSciNet
MATH
Google Scholar
Kopczyński, W.: A non-singular universe with torsion. Phys. Lett. A 39, 219–220 (1972)
ADS
MathSciNet
Google Scholar
Kopczyński, W.: An anisotropic universe with torsion. Phys. Lett. A 43, 63–64 (1973)
ADS
Google Scholar
Trautman, A.: Spin and torsion may avert gravitational singularities. Nat. Phys. Sci. 242, 7–8 (1973)
ADS
Google Scholar
Hehl, F.W., von der Heyde, P., Kerlick, G.D.: General relativity with spin and torsion and its deviations from Einstein’s theory. Phys. Rev. D 10, 1066–1069 (1974)
ADS
MathSciNet
Google Scholar
Kuchowicz, B.: Friedmann-like cosmological models without singularity. Gen. Relativ. Gravit. 9, 511–517 (1978)
ADS
MathSciNet
Google Scholar
Gasperini, M.: Spin-dominated inflation in the Einstein–Cartan theory. Phys. Rev. Lett. 56, 2873–2876 (1986)
ADS
Google Scholar
Popławski, N.J.: Cosmology with torsion: an alternative to cosmic inflation. Phys. Lett. B 694, 181–185 (2010). Erratum: Phys. Lett. B 701, 672 (2011)
ADS
MathSciNet
Google Scholar
Popławski, N.J.: Big bounce from spin and torsion. Gen. Relativ. Gravit. 44, 1007–1014 (2012)
ADS
MathSciNet
MATH
Google Scholar
Popławski, N.: Nonsingular, big-bounce cosmology from spinor-torsion coupling. Phys. Rev. D 85, 107502 (2012)
ADS
Google Scholar
Cubero, J.L., Popławski, N.J.: Analysis of big bounce in Einstein–Cartan cosmology. Class. Quantum Grav. 37, 025011 (2020)
ADS
MathSciNet
Google Scholar
Novikov, I.D.: Change of relativistic collapse into anticollapse and kinematics of a charged sphere. J. Exp. Theor. Phys. Lett. 3, 142–144 (1966)
Google Scholar
Pathria, R.K.: The universe as a black hole. Nature 240, 298–299 (1972)
ADS
Google Scholar
Frolov, V.P., Markov, M.A., Mukhanov, V.F.: Through a black hole into a new universe? Phys. Lett. B 216, 272–276 (1989)
ADS
MathSciNet
Google Scholar
Frolov, V.P., Markov, M.A., Mukhanov, V.F.: Black holes as possible sources of closed and semiclosed worlds. Phys. Rev. D 41, 383–394 (1990)
ADS
MathSciNet
Google Scholar
Smolin, L.: Did the Universe evolve? Class. Quantum Grav. 9, 173–191 (1992)
ADS
MathSciNet
Google Scholar
Stuckey, W.M.: The observable universe inside a black hole. Am. J. Phys. 62, 788–795 (1994)
ADS
MathSciNet
MATH
Google Scholar
Easson, D.A., Brandenberger, R.H.: Universe generation from black hole interiors. J. High Energ. Phys. 06, 024 (2001)
ADS
MathSciNet
Google Scholar
Smoller, J., Temple, B.: Shock-wave cosmology inside a black hole. Proc. Natl. Acad. Sci. USA 100, 11216–11218 (2003)
ADS
MathSciNet
MATH
Google Scholar
Popławski, N.J.: Radial motion into an Einstein–Rosen bridge. Phys. Lett. B 687, 110–113 (2010)
ADS
MathSciNet
Google Scholar
Popławski, N.: Universe in a black hole in Einstein–Cartan gravity. Astrophys. J. 832, 96 (2016)
ADS
Google Scholar
Desai, S., Popławski, N.J.: Non-parametric reconstruction of an inflaton potential from Einstein–Cartan–Sciama–Kibble gravity with particle production. Phys. Lett. B 755, 183–189 (2016)
ADS
Google Scholar
Unger, G., Popławski, N.: Big bounce and closed universe from spin and torsion. Astrophys. J. 870, 78 (2019)
ADS
Google Scholar
Hehl, F.W., Datta, B.K.: Nonlinear spinor equation and asymmetric connection in general relativity. J. Math. Phys. 12, 1334–1339 (1971)
ADS
MathSciNet
Google Scholar
Popławski, N.J.: Nonsingular Dirac particles in spacetime with torsion. Phys. Lett. B 690, 73–77 (2010). Erratum: Phys. Lett. B 727, 575 (2013)
ADS
MathSciNet
Google Scholar
Landau, L.D., Lifshitz, E.M.: Mechanics. Pergamon, Oxford (1976)
MATH
Google Scholar
Dirac, P.A.M.: The Principles of Quantum Mechanics. Oxford University Press, Oxford (1930)
MATH
Google Scholar
Landau, L.D., Lifshitz, E.M.: Quantum Mechanics: Non-Relativistic Theory. Pergamon, Oxford (1977)
MATH
Google Scholar
Sakurai, J.J.: Modern Quantum Mechanics. Addison-Wesley, New York (1994)
Google Scholar
Maggiore, M.: The algebraic structure of the generalized uncertainty principle. Phys. Lett. B 319, 83–86 (1993)
ADS
MathSciNet
Google Scholar
Maggiore, M.: Quantum groups, gravity, and the generalized uncertainty principle. Phys. Rev. D 49, 5182–5187 (1994)
ADS
MathSciNet
Google Scholar
Sasakura, N.: Space-time uncertainty relation and Lorentz invariance. J. High Energy Phys 05, 015 (2000)
ADS
MathSciNet
MATH
Google Scholar
Sasai, Y., Sasakura, N.: The Cutkosky rule of three dimensional noncommutative field theory in Lie algebraic noncommutative spacetime. J. High Energy Phys. 06, 013 (2009)
ADS
MathSciNet
Google Scholar
Pathria, R.K.: Statistical Mechanics. Pergamon, Oxford (1972)
MATH
Google Scholar
Bunch, T.S., Parker, L.: Feynman propagator in curved spacetime: a momentum-space representation. Phys. Rev. D 20, 2499–2510 (1979)
ADS
Google Scholar
Hiller, B., Mota, A.L., Nemes, M.C., Osipov, A.A., Sampaio, M.: The role of hidden ambiguities in the linear sigma model with fermions. Nucl. Phys. A 769, 53–70 (2006)
ADS
Google Scholar
Cynolter, G., Lendvai, E.: Symmetry preserving regularization with a cutoff. Cent. Eur. J. Phys. 9, 1237–1247 (2011)
MATH
Google Scholar
Huang, K.: A critical history of renormalization. Int. J. Mod. Phys. A 28, 1330050 (2013)
ADS
Google Scholar
Tanabashi, M., et al.: (Particle Data Group), Review of particle physics. Phys. Rev. D 98, 030001 (2018)
ADS
Google Scholar
Uehling, E.A.: Polarization effects in the positron theory. Phys. Rev. 48, 55–63 (1935)
ADS
MATH
Google Scholar
Popławski, N.: Schwinger’s variational principle in Einstein–Cartan gravity. Phys. Rev. D 89, 027501 (2014)
ADS
Google Scholar