Adamek, J., Clarkson, C., Coates, L., Durrer, R., Kunz, M.: Bias and scatter in the Hubble diagram from cosmological large-scale structure. Phys. Rev. D 100, 021301 (2019)
ADS
MathSciNet
Google Scholar
Ade, P.A., et al.: Planck 2015 results-xiii. Cosmological parameters. Astron. Astrophys. 594, A13 (2016)
Google Scholar
Aghanim, N., et al.: “Planck 2018 results. VI. Cosmological parameters.” arXiv preprint arXiv:1807.06209 (2018)
Albert, D.: Time and Chance. Harvard University Press, Cambridge, MA (2000)
MATH
Google Scholar
Anderson, P.W.: More is different. Science 177, 393–396 (1972)
ADS
Google Scholar
Arnol’d, V.I.: Mathematical Methods of Classical Mechanics. Springer, Berlin (1989)
MATH
Google Scholar
Arnold, V.I., Kozlov, V.V., Neishtadt, A.I.: Mathematical Aspects of Classical and Celestial Mechanics, vol. 3. Springer Science and Business Media, Berlin (2007)
MATH
Google Scholar
Arnowitt, R., Deser, S., Misner, C.W.: (1962) “The dynamics of general relativity”. In: Louis Witten (Ed.) Gravitation: An Introduction to Current Research. Wiley, Amsterdam, pp. 227–265. Reprinted in Gen. Rel. Grav. 40: 1997 (2008)
Barbour, J.: The End of Time: The Next Revolution in Physics. Oxford University Press, Oxford (2001)
Google Scholar
Berridge, Cell Signalling Biology Portland Press (2014). https://doi.org/10.1042/csb0001001
http://www.cellsignallingbiology.co.uk/csb/
Google Scholar
Breuer, R.A., Ehlers, J.: Propagation of high-frequency electromagnetic waves through a magnetized plasma in curved space-time. I. Proc. R. Soc. Lond A 370, 389–406 (1980)
ADS
MathSciNet
Google Scholar
Breuer, R.A., Ehlers, J.: Propagation of high-frequency electromagnetic waves through a magnetized plasma in curved space-time. II. Application of the asymptotic approximation. Proc. R. Soc. Lond A 374, 65–86 (1981)
ADS
MathSciNet
Google Scholar
Buchert, T.: On average properties of inhomogeneous fluids in general relativity: perfect fluid cosmologies. Gen. Relativ. Gravit. 33, 1381–1405 (2001)
ADS
MathSciNet
MATH
Google Scholar
Callender, C.: Thermodynamic Asymmetry in Time. In: Zalta, E.N. (ed.) The Stanford Encyclopedia of Philosophy. https://plato.stanford.edu/archives/win2016/entries/time-thermo/ (2016)
Campbell, N.A., Reece, J.B.: Biology. Benjamin Cummings, San Francisco (2005)
Google Scholar
Clarkson, C., Ellis, G., Larena, J., Umeh, O.: Does the growth of structure affect our dynamical models of the Universe? The averaging, backreaction, and fitting problems in cosmology. Rep. Prog. Phys. 74, 112901 (2011)
MathSciNet
Google Scholar
Clifton, T., Ellis, G.F., Tavakol, R.: A gravitational entropy proposal. Class. Quantum Gravity 30, 125009 (2013)
ADS
MathSciNet
MATH
Google Scholar
Dodelson, S.: Modern Cosmology. Academic Press, Cambridge (2003)
Google Scholar
Donoghue, J.F., Meneze, G.: Arrow of causality and quantum gravity. Phys. Rev. Lett 123, 171601 (2019)
ADS
MathSciNet
Google Scholar
Drossel, B.: On the relation between the second law of thermodynamics and classical and quantum mechanics. In: Falkenburg, B., Morrison, M. (eds.) Why More is Different. Springer Verlag, Heidelberg (2015)
Google Scholar
Drossel, B.: Ten reasons why a thermalized system cannot be described by a many-particle wave function. Stud. Hist. Philos. Sci. B 58, 12–21 (2017). arXiv:1509.07275
MATH
Google Scholar
Drossel, B., Ellis, G.: Contextual wavefunction collapse: an integrated theory of quantum measurement. N. J. Phys. 20, 113025 (2018)
Google Scholar
Dyson, F.J.: Energy in the universe. Sci. Am. 225(3), 50–59 (1971)
Google Scholar
Earman, J.: The ‘past hypothesis’: not even false. Stud. Hist. Philos. Sci. B 37, 399–430 (2006)
MathSciNet
MATH
Google Scholar
East, W.E., Wojtak, R., Pretorius, F.: Einstein–Vlasov calculations of structure formation. (2019). arXiv:1908.05683
Eddington, A.S.: The nature of the physical world. Macmillan, New York (2019)
MATH
Google Scholar
Ehlers, J., Prasanna, A.R.: A WKB formalism for multicomponent fields and its application to gravitational and sound waves in perfect fluids. Class. Quantum Gravity 13, 2231 (1996)
ADS
MathSciNet
MATH
Google Scholar
Ellis, G.F.R.: (1971) “General relativity and cosmology”. In General Relativity and Cosmology, Varenna Course No. XLVII, ed R. K. Sachs (Academic, New York). Reprinted as Golden Oldie, General Relativity and Gravitation41, 581–660 (2009)
Ellis, G.F.: Relativistic cosmology: its nature, aims and problems. In: Bertotti, B. (ed.) General Relativity and Gravitation, pp. 215–288. Springer, Dordrecht (1984)
Google Scholar
Ellis, G.F.: Cosmology and local physics. N. Astron. Rev. 46, 645–657 (2002)
ADS
Google Scholar
Ellis, G.F.: Physics, complexity and causality. Nature 435, 743 (2005)
ADS
Google Scholar
Ellis, G.F.R.: Physics in the real universe: time and spacetime. Gen. Relativ. Gravit. 38, 1797–1824 (2006)
ADS
MathSciNet
MATH
Google Scholar
Ellis, G.F.R.: On the limits of quantum theory: contextuality and the quantum-classical cut. Ann. Phys. 327, 1890–1932 (2012). arXiv:1108.5261
ADS
MathSciNet
MATH
Google Scholar
Ellis, G.F.R.: The evolving block universe and the meshing together of times. Ann. N. Y Acad. Sci. 1326, 26–41 (2014)
ADS
Google Scholar
Ellis, G.F.R.: How Can Physics Underlie the Mind? Top-Down Causation in the Human Context. Springer, Heidelberg (2016)
Google Scholar
Ellis, G.F.R.: Foundational issues relating spacetime, matter, and quantum mechanics. J. Phys. 1275, 012001 (2019)
Google Scholar
Ellis, G.F.R., Drossel, B.: How downwards causation occurs in digital computers. Found. Phys. 49, 1253–1277 (2019)
ADS
MathSciNet
MATH
Google Scholar
Ellis, G.F.R., Goswami, R.: Spacetime and the Passage of Time. Springer Handbook of Spacetime, pp. 243–264. Springer, Berlin (2014)
Google Scholar
Ellis, G.F.R., Kopel, J.: The dynamical emergence of biology from physics: branching causation via biomolecules. Front. Physiol. 9, 1966 (2018)
Google Scholar
Ellis, G.F.R., Maartens, R.: The emergent universe: inflationary cosmology with no singularity. Class. Quantum Gravity 21, 223 (2003)
ADS
MathSciNet
MATH
Google Scholar
Ellis, G.F.R., Sciama, D.W.: Global and non-global problems in cosmology. In: Synge, J.L., O’Raifertaigh, L. (eds.) General Relativity, p. 35. Oxford University Press, Oxford (1972)
Google Scholar
Ellis, G.F.R., Murugan, J., Tsagas, C.G.: The emergent universe: an explicit construction. Class. Quantum Gravity 21, 233 (2003)
ADS
MathSciNet
MATH
Google Scholar
Ellis, G.F., Meissner, K.A., Nicolai, H.: The physics of infinity. Nat. Phys. 14, 770 (2018)
Google Scholar
Fanizza, G., Gasperini, M., Marozzi, G., Veneziano, G.: “Generalized covariant prescriptions for averaging cosmological observables”. (2019) arXiv:1911.09469
Ghirardi, G.: Sneaking a Look at God’s Cards: Unraveling the Mysteries of Quantum Mechanics. Princeton University Press, Princeton (2007)
MATH
Google Scholar
Gisin, N.: “Indeterminism in physics, classical chaos and bohmian mechanics. are real numbers really real?” arXiv preprint arXiv:1803.06824 and Erkenntnis
https://doi.org/10.1007/s10670-019-00165-8 (2018)
Hartwell, L.H., Hopfield, J.J., Leibler, S., Murray, A.W.: From molecular to modular cell biology. Nature 402(Supplement), C47–C52 (1999)
Google Scholar
Hawking, S.W.: Perturbations of an expanding universe. Astrophys. J. 145, 544 (1966)
ADS
Google Scholar
Hawking, S.W., Ellis, G.F.R.: The Large Scale Structure of Spacetime. Cambridge Uiversity Press, Cambridge (1973)
MATH
Google Scholar
Hirsch, M.W.: Differential Topology. Springer, Berlin, Heidelberg (1976)
MATH
Google Scholar
Hossenfelder, S.: Minimal length scale scenarios for quantum gravity. Living Rev. Relativ. 16, 2 (2013)
ADS
MATH
Google Scholar
Isham, C.J.: Lectures on quantum theory Mathematical and structural foundations. Allied Publishers, New Delhi (2001)
Google Scholar
Karplus, M.: Development of multiscale models for complex chemical systems: from H+ H2 to biomolecules. Angew. Chem. Int. Ed. 53, 9992–10005 (2014)
Google Scholar
Lamb, J.S., Roberts, J.A.: Time-reversal symmetry in dynamical systems: a survey. Physica D 112, 1–39 (1998)
ADS
MathSciNet
MATH
Google Scholar
Lancaster, T., Blundell, S.J.: Quantum field theory for the gifted amateur. OUP, Oxford (2014)
MATH
Google Scholar
Lebowitz, J.L.: Statistical mechanics: a selective review of two central issues. Rev. Mod. Phys. 71, S346–S357 (1999)
Google Scholar
Loll, R.: Discrete approaches to quantum gravity in four dimensions. Living Rev. Relativ. (1998) https://link.springer.com/journal/41114
McLenaghan, R.G.: An explicit determination of the empty space-times on which the wave equation satisfies Huygens’ principle. Math. Proc. Camb. Philos. Soc. 65, 139–155 (1969)
ADS
MathSciNet
MATH
Google Scholar
McLenaghan, R.G.: On the validity of Huygens’ principle for second order partial differential equations with four independent variables. Part I: Derivation of necessary conditions. Ann. Phys. Théor. 20, 153–188 (1974)
MATH
Google Scholar
McLenaghan, R.G.: Huygens’ principle. Ann. Phys. Théor. 37, 211–236 (1982)
MathSciNet
MATH
Google Scholar
Murugan, J., Weltmann, A., Ellis, G.F.R. (eds.): Foundations of Space and Time: Reflections on Quantum Gravity. Cambridge University Press, Cambridge (2012)
MATH
Google Scholar
Noble, D.: Modeling the heart-from genes to cells to the whole organ. Science 295, 1678–1682 (2002)
ADS
Google Scholar
Noble, D.: A theory of biological relativity: no privileged level of causation. Interface Focus 2, 55–64 (2012)
Google Scholar
O’Gorman, T.J., et al.: Field testing for cosmic ray soft errors in semiconductor memories. IBM J. Res. Dev. 40, 41–50 (1996)
Google Scholar
Penrose, R.: The Road to Reality: A Complete Guide to the Laws of the Universe. Vintage, New York (2006)
MATH
Google Scholar
Penrose, R.: Fashion, Faith, and Fantasy in the New Physics of the Universe. Princeton University Press, Princeton (2017)
MATH
Google Scholar
Perez, A.: Spin foam models for quantum gravity. Class. Quantum Gravity 20, R43 (2003)
ADS
MathSciNet
MATH
Google Scholar
Perez, A.: The spin-foam approach to quantum gravity. Living Rev. Relativ. 16, 3 (2013)
ADS
MATH
Google Scholar
Peter, P., Uzan, J.-P.: Primordial Cosmology. Oxford Graduate Texts, Oxford (2013)
Google Scholar
Pretor-Pinney, G.: The Wave Watcher’s Companion: Ocean Waves, Stadium Waves, and All the Rest of Life’s Undulations. Penguin, New Jersey (2010)
Google Scholar
Rovelli, C.: “Where was past low-entropy?” (2018) arXiv:1812.03578
Rovelli, C.: “Neither Presentism nor Eternalism” (2019) arXiv:1910.02474
Scientific American Special Edition (2012) “A Matter of Time” 21, 8–13
Simon, H.A.: The Sciences of the Artificial. MIT Press, Cambridge (1996)
Google Scholar
Sommerfeld, A.: Partial Differential Equations in Physics. Academic pPress, New York (1949)
MATH
Google Scholar
Strogatz, S.H.: Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering. CRC Press, Boca Raton (2018)
MATH
Google Scholar
Susskind, L., Friedman, A.: Quantum Mechanics: The Theoretical Minimum. Basic Books, New York (2014)
MATH
Google Scholar
Tanenbaum, A.S.: Structured Computer Organisation, 5th edn. Prentice Hall, Englewood Cliffs (2006)
Google Scholar
Uffink, J.: Bluff your way in the second law of thermodynamics. Stud. Hist. Philos. Sci. B 32, 305–394 (2001)
MathSciNet
MATH
Google Scholar
Weinberg, S.: The Quantum Theory of Fields. Vol. 1 Foundations. Cambridge University Press, Cambridge (1995)
MATH
Google Scholar
Weinstein, S.: Electromagnetism and time-asymmetry. Mod. Phys. Lett. A 26, 815–818 (2011)
ADS
MathSciNet
MATH
Google Scholar
Wheeler, J.A., Feynman, R.P.: Interaction with the absorber as the mechanism of radiation. Rev. Mod. Phys. 17, 157 (1945)
ADS
Google Scholar