Skip to main content

A New Version of the Aharonov–Bohm Effect

Abstract

We propose a simple situation in which the magnetic Aharonov–Bohm potential influences the values of the deficiency indices of the initial Schrödinger operator, so determining whether the particle interacts with the solenoid or not. Even with the particle excluded from the magnetic field, the number of self-adjoint extensions of the initial Hamiltonian depends on the magnetic flux. This is a new point of view of the Aharonov–Bohm effect.

This is a preview of subscription content, access via your institution.

References

  1. Abramowitz, A.: Handbook of Mathematical Functions with Formulas, Graphs Mathematical Tables. National Bureau of Standards Applied Mathematics Series 55 (1964)

  2. Adami, R., Teta, A.: On the Aharonov–Bohm Hamiltonian. Lett. Math. Phys. 43, 43–54 (1998)

    MathSciNet  Article  Google Scholar 

  3. Ahari, M.T., Ortiz, G., Seradjeh, B.: On the role of self-adjointness in the continuum formulation of topological quantum phases. Am. J. Phys. 84, 858–868 (2016)

    ADS  Article  Google Scholar 

  4. Aharonov, Y., Bohm, D.: Significance of electromagnetic potentials in the quantum theory. Phys. Rev. 115, 485–491 (1959)

    ADS  MathSciNet  Article  Google Scholar 

  5. Akhiezer, N.I., Glazman, I.M.: Theory of Linear Operators in Hilbert Space. Dover Publications, New York (1993)

    MATH  Google Scholar 

  6. Audretsch, J., Skarzhinsky, V.D., Voronov, B.L.: Elastic scattering and bound states in the Aharonov–Bohm potential superimposed by an attractive \(\rho ^{-2}\) potential. J. Phys. A 34, 235–250 (2001)

    ADS  MathSciNet  Article  Google Scholar 

  7. Ávila-Aoki, M., Cisneros, C., Martínez-y-Romero, R.P., Núñez-Yépez, H.N., Salas-Brito, A.L.: Classical and quantum motion in an inverse square potential. Phys. Lett. A 373, 418–421 (2009)

    ADS  Article  Google Scholar 

  8. Ballesteros, M., Weder, R.: High-Velocity for the scattering operator Aharonov–Bohm effect in three dimensions. Commun. Math. Phys. 285, 345–398 (2009)

    ADS  MathSciNet  Article  Google Scholar 

  9. Basu-Mallick, B., Gupta, K.S.: Bound states in one-dimensional quantum N-body systems with inverse square interaction. Phys. Lett. A 292, 36–42 (2001)

    ADS  MathSciNet  Article  Google Scholar 

  10. Batelaan, H., Tonomura, A.: The Aharonov–Bohm effects: variations on a subtle theme. Phys. Today 62, 38–43 (2009)

    Article  Google Scholar 

  11. Becker, M., Batelaan, H.: Experimental test for approximately dispersionless forces in the Aharonov–Bohm effect. Europhys. Lett. 115, 10011 (2016)

    ADS  Article  Google Scholar 

  12. Bonneau, G., Faraut, J., Valent, G.: Self-adjoint extensions of operators the teaching of quantum mechanics. Am. J. Phys. 69, 322–331 (2001)

    ADS  Article  Google Scholar 

  13. Brattan, D.K., Ovdat, O., Akkermans, E.: Scale anomaly of a Lifshitz scalar: a universal quantum phase transition to discrete scale invariance. Phys. Rev. D 97, 061701 (2018)

    ADS  Article  Google Scholar 

  14. Brattan, D.: \({\cal{N}}=2\) supersymmetry anisotropic scale invariance. Phys. Rev. D 98, 036005 (2018)

    ADS  MathSciNet  Article  Google Scholar 

  15. Camblong, H.E., Epele, L.N., Fanchiotti, H., García-Canal, C.A.: Renormalization of the inverse square potential. Phys. Rev. Lett. 85, 1590–1593 (2000)

    ADS  Article  Google Scholar 

  16. Caprez, A., Barwick, B., Batelaan, H.: Macroscopic test of the Aharonov–Bohm effect. Phys. Rev. Lett. 99, 210401 (2007)

    ADS  Article  Google Scholar 

  17. Dabrowski, L., Šťovíček, P.: Aharonov–Bohm effect with \(\delta \)-type interaction. J. Math. Phys. 39, 47–62 (1998)

    ADS  MathSciNet  Article  Google Scholar 

  18. de Oliveira, C.R., Pereira, M.: Mathematical justification of the Aharonov–Bohm Hamiltonian. J. Stat. Phys. 133, 1175–1184 (2008)

    ADS  MathSciNet  Article  Google Scholar 

  19. de Oliveira, C.R., Pereira, M.: Scattering self-adjoint extensions of the Aharonov–Bohm Hamiltonian. J. Phys. A 43, 354011 (2010)

    MathSciNet  Article  Google Scholar 

  20. de Oliveira, C.R., Pereira, M.: Impenetrability of Aharonov–Bohm solenoids. Proof of norm resolvent convergence. Lett. Math. Phys. 95, 41–51 (2011)

    ADS  MathSciNet  Article  Google Scholar 

  21. de Oliveira, C.R., Romano, R.G.: Aharonov–Bohm effect without contact with the solenoid. J. Math. Phys. 58, 102102 (2017)

    ADS  MathSciNet  Article  Google Scholar 

  22. Earman, J.: The role of idealizations in the Aharonov–Bohm effect. Synthese 196, 1991–2019 (2019)

    MathSciNet  Article  Google Scholar 

  23. Ehrenberg, W., Siday, R.E.: The refractive index in electron optics the principles of dynamics. Proc. Phys. Soc. B. 62, 8–21 (1949)

    ADS  Article  Google Scholar 

  24. Gitman, D.M., Tyutin, I.V., Voronov, B.L.: Self-adjoint Extensions in Quantum Mechanics, PMP 62. Birkhäuser, New York (2012)

    Book  Google Scholar 

  25. Gupta, K.S., Rajeev, S.G.: Renormalization in quantum mechanics. Phys. Rev. D 48, 5940–5945 (1993)

    ADS  Article  Google Scholar 

  26. Helffer, B.: Effet d’Aharonov Bohm sur un état borné de l’équation de Schrödinger. Commun. Math. Phys. 119, 315–329 (1988)

    ADS  Article  Google Scholar 

  27. Kretzschmar, M.: Aharonov–Bohm scattering of a wave packet of finite extension. Z. Phys. 185, 84–96 (1965)

    ADS  Article  Google Scholar 

  28. Maeda, H.: Unitary evolution of the quantum universe with a Brown–Kuchar dust. Class. Quantum Gravity 32, 235023 (2015)

    ADS  MathSciNet  Article  Google Scholar 

  29. Magni, C., Valz-Gris, F.: Can elementary quantum mechanics explain the Aharonov–Bohm effect? J. Math. Phys. 36, 177–186 (1995)

    ADS  MathSciNet  Article  Google Scholar 

  30. Martínez-y-Romero, R.P., Núñez-Yépez, H.N., Salas-Brito, A.L.: The two dimensional motion of a particle in an inverse square potential: classical and quantum aspects. J. Math. Phys. 54, 053509 (2013)

    ADS  MathSciNet  Article  Google Scholar 

  31. Peshkin, M.: Aharonov–Bohm effect in bound states: theoretical experimental status. Phys. Rev. A 23, 360–363 (1981)

    ADS  Article  Google Scholar 

  32. Peshkin, M., Tonomura, A.: The Aharonov–Bohm Effect, LNP 340. Springer, New York (1989)

    Book  Google Scholar 

  33. Roux, Ph, Yafaev, D.: On the mathematical theory of the Aharonov–Bohm effect. J. Phys. A 35, 7481–7492 (2002)

    ADS  MathSciNet  Article  Google Scholar 

  34. Ruijsenaars, S.N.M.: The Aharonov–Bohm effect and scattering theory. Ann. Phys. 146, 1–34 (1983)

    ADS  MathSciNet  Article  Google Scholar 

  35. Seradjeh, B., Vennettilli, M.: Surface spectra of Weyl semimetals through self-adjoint extensions. Phys. Rev. B 97, 075132 (2018)

    ADS  Article  Google Scholar 

  36. Tonomura, A., Osakabe, N., Matsuda, T., Kawasaki, T., Endo, J., Yano, S., Yamada, H.: Evidence for Aharonov–Bohm effect with magnetic field completely shielded from electron wave. Phys. Rev. Lett. 56, 792–795 (1986)

    ADS  Article  Google Scholar 

  37. Wei, H., Han, R., Wei, X.: Quantum phase of induced dipoles moving in a magnetic field. Phys. Rev. Lett. 75, 2071–2073 (1995)

    ADS  Article  Google Scholar 

  38. Wilkens, M.: Quantum phase of a moving dipole. Phys. Rev. Lett. 72, 5–8 (1994)

    ADS  Article  Google Scholar 

  39. Zhou, L.J., et al.: Smooth sharp creation of a pointlike source for a (\(3+1\))-dimensional quantum field. Phys. Rev. D 95, 085007 (2017)

    ADS  MathSciNet  Article  Google Scholar 

Download references

Acknowledgements

CRdO thanks the partial support by CNPq (a Brazilian government agency, under contract 303503/2018-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to César R. de Oliveira.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

de Oliveira, C.R., Romano, R.G. A New Version of the Aharonov–Bohm Effect. Found Phys 50, 137–146 (2020). https://doi.org/10.1007/s10701-020-00328-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10701-020-00328-6

Keywords

  • Aharonov–Bohm effect
  • Self-adjoint extensions
  • Magnetic potential