Bell, J.S.: On the Einstein–Podolski–Rosen Paradox. Physics 1, 195 (1964)
Article
Google Scholar
Spekkens, R.W. Phys. Rev. A. 2007, 75, 032110. arXiv:quant-ph/0401052 (2005)
Harrigan, N.; Spekkens, R.W. Found. Phys. 2010, 40, 125. arXiv:0706.2661(2007)
Pusey, M.F., Barrett, J., Rudolph, T.: On the reality of the quantum state. Nat. Phys. 8(6), 476–479 (2012)
Article
Google Scholar
Colbeck, R., Renner, R.: Is a system’s wave function in one-to-one correspondence with its elements of reality? Phys. Rev. Lett. 108, 150402 (2012)
ADS
Article
Google Scholar
Lewis, P.G., Jennings, D., Barrett, J., Rudolph, T.: Distinct quantum states can be compatible with a single state of reality. Phys. Rev. Lett. 109, 50404 (2012)
Article
Google Scholar
Aspect, A., Grangier, P., Roger, G.: Experimental realization of Einstein–Podolsky–Rosen–Bohm Gedankenexperiment: a new violation of Bell’s Inequalities. Phys. Rev. Lett. 49, 91–94 (1982)
ADS
Article
Google Scholar
Aspect, A., Dalibard, J., Roger, G.: Experimental test of Bell’s Inequalities using time-varying analyzers. Phys. Rev. Lett. 49, 1804–1807 (1982)
ADS
MathSciNet
Article
Google Scholar
Christensen, B.G., McCusker, K.T., Altepeter, J.B., Calkins, B., Gerrits, T., Lita, A.E., Miller, A., Shalm, L.K., Zhang, Y., Nam, S.W., Brunner, N.: Detection-loophole-free test of quantum nonlocality, and applications. Phys. Rev. Lett. 111, 130406 (2013)
ADS
Article
Google Scholar
Hensen, B., Bernien, H., Dréau, A.E., Reiserer, A., Kalb, N., Blok, M.S., Ruitenberg, J., Vermeulen, R.F.L., Schouten, R.N., Abellán, C., Amaya, W., Pruneri, V., Mitchell, M.W., Markham, M., Twitchen, D.J., Elkouss, D., Wehner, S., Taminiau, T.H., Hanson, R.: Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres. Nature 526, 682 (2015)
ADS
Article
Google Scholar
Giustina, M., et al.: Significant-loophole-free test of bell’s theorem with entangled photons. Phys. Rev. Lett. 115, 250401 (2015)
ADS
Article
Google Scholar
Shalm, L.K., et al.: Strong loophole-free test of local realism. Phys. Rev. Lett. 115, 250402 (2015)
ADS
Article
Google Scholar
Handsteiner, J., et al.: Phys. Rev. Lett. 118, 060401 (2017)
ADS
Article
Google Scholar
Page, D.N.: The Einstein–Podolsky–Rosen Physical Reality is completely described by quantum mechanics. Phys. Lett. 91A, 57 (1982)
ADS
MathSciNet
Article
Google Scholar
Bitbol, M.: An analysis of the Einstein–Podolsky–Rosen correlations in terms of events. Phys. Lett. 96A, 57 (1983)
ADS
Google Scholar
Caves, C.M., Fuchs, C.A., Schack, R.: Quantum probabilities as Bayesian probabilities. Phys. Rev. A 65, 022305 (2002)
ADS
MathSciNet
Article
Google Scholar
Fuchs, C.A.: QBism, the perimeter of Quantum Bayesianism. arXiv: 1003:5209 (2010)
Fuchs, C.A., Schack, R.: Quantum-Bayesian coherence. Rev. Mod. Phys. 85, 1693 (2013)
ADS
Article
Google Scholar
Fuchs, C.A., Mermin, D.N., Schack, R.: An Introduction to QBism with an Application to the Locality of Quantum Mechanics. arXiv: 1311:5253 (2013)
Everett, H.: On the Foundations of Quantum Mechanics, Ph.D. thesis. Princeton University, Department of Physics (1957)
Everett, H.: Relative state formulation of quantum mechanics. Rev. Mod. Phys. 29, 454–462 (1957)
ADS
MathSciNet
Article
Google Scholar
DeWitt, B.S., Graham, N. (eds.): The Many-Worlds Interpretation of Quantum Mechanics. Princeton University Press, Princeton (1973)
Google Scholar
Zwirn, H.: Decoherence and the Measurement Problem. In: proceedings of “Frontiers of Fundamental Physics 14”, PoS(FFP14) 223 (2015)
Zwirn, H.: The measurement problem: decoherence and convivial solipsism. Found. Phys. 46, 635–667 (2016)
ADS
MathSciNet
Article
Google Scholar
Zwirn, H.: Delayed choice, complementarity, entanglement and measurement. Phys. Essays 30, 3 (2016)
Google Scholar
d’Espagnat, B.: Le Réel voilé, analyse des concepts quantiques. 1994, Fayard. English Transl: Veiled Reality: An Analysis of Quantum Mechanical Concepts. Westview Press, Boulder, Colorado (2003)
Goldstein, S.: Quantum theory without observers. Physics Today 51, 42–47 (1998)
Article
Google Scholar
Wigner E. P. Interpretation of quantum mechanics. 1976, In: Wheeler, J.A., Zurek, W. (eds.) Quantum Theory and Measurement. Princeton University Press (1983)
Wigner, E.P.: Symetries and Reflections. Indiana University Press, Bloomington (1967)
Google Scholar
London, F., Bauer, E.: La théorie de l’observation en mécanique quantique. Hermann (1939)
Einstein, A. to Heitler, W. 1948 translated in Fine, A. Einstein’s Interpretation of Quantum Theory. In: Beller, M., Cohen, R.S., Renn, J. (eds). Einstein in Context. Cambridge University Press (1993)
Vaidman, L. Many Worlds Interpretation of Quantum Mechanics. In: Zalta, E.N. (ed) The Stanford Encyclopedia of Philosophy. http://plato.stanford.edu/entries/qm-manyworlds/ (2014)
Albert, D.: Quantum Mechanics and Experience. Harvard University Press, Cambridge-London (1992)
Google Scholar
Albert D.; Loewer B. Interpreting the Many Worlds: Interpretations. Synthese 82, 195–213 (1988)
Google Scholar
Barrett, J.: Everett’s relative-state formulation of quantum mechanics. In: Zalta, E.N. (ed) The Stanford Encyclopedia of Philosophy. https://plato.stanford.edu/entries/qm-everett/ (2014)
Barrett, J.: Everett’s pure wave mechanics and the notion of worlds. Eur. J. Philos. Sci. 1, 277–302 (2011)
MathSciNet
Article
Google Scholar
Everett, H.: The theory of the universal wave function. 1956. First printed in DeWitt, B.S.; Graham, N. (eds) The Many-Worlds Interpretation of Quantum Mechanics. Princeton University Press, Princeton, pp. 3–140 (1973)
Google Scholar
Vaidman, L.: On schizophrenic experiences of the neutron or why we should believe in the many-worlds interpretation of quantum theory. Int. Stud. Philos. Sci. 12, 245–261 (1998)
MathSciNet
Article
Google Scholar
Wallace, D.: A formal proof of the born rule from decision theoretic assumptions. In: Saunders, S., Barrett, J., Kent, A., Wallace, D. (eds.) Many Worlds? Everett, Quantum Theory and Reality. Oxford University Press, Oxford (2010)
MATH
Google Scholar
Kent, A.: One World versus Many: The Inadequacy of Everettian Accounts of Evolution, Probability, and Scientific Confirmation. In: Saunders, S., Barrett, J., Kent, A., Wallace, D. (eds.) Many worlds? Everett, quantum theory and reality. Oxford University Press, Oxford (2010)
MATH
Google Scholar
Barrett, J.: The Quantum Mechanics of Minds and Worlds. Oxford University Press, Oxford (1999)
Google Scholar
Vaidman, L.: Quantum Stud. (2014). https://doi.org/10.1007/s40509-014-0008-4
Article
Google Scholar
d’Espagnat, B.: Conceptual Foundations of Quantum Mechanics. Benjamin, New York (1971)
Google Scholar
Rovelli, C.: Relational quantum mechanics. Int. J. Theor. Phys. 35, 1637–1657 (1996)
MathSciNet
Article
Google Scholar
Rovelli, C., Smerlak, M.: Relational EPR. Found. Phys. 37, 427–445 (2007)
ADS
MathSciNet
Article
Google Scholar
Laudisa, F., Rovelli, C.: Relational quantum mechanics. In: Zalta, E.N. (ed) The Stanford Encyclopedia of Philosophy. http://plato.stanford.edu/entries/qm-relational/ (2008)
Einstein, A., Podolsky, B., Rosen, N.: Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47, 777–780 (1935)
ADS
Article
Google Scholar
Fine, A.: The Einstein–Podolsky–rosen argument in quantum theory. In: Zalta, E.N. (ed) The Stanford Encyclopedia of Philosophy. https://plato.stanford.edu/entries/qt-epr/ (2013)
Bohm, D.: Quantum Theory. Prentice Hall, New York (1951)
Google Scholar
Clauser, J.F., Horne, M.A., Shimony, A., Holt, R.A.: Proposed experiment to test local hidden-variable theories. Phys. Rev. Lett. 23, 880–884 (1969)
ADS
Article
Google Scholar