Skip to main content
Log in

Quantum Unsharpness, Potentiality, and Reality

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

Paul Busch argued that the positive operator (valued) measure, a generalization of the standard quantum observable, enables a consistent notion of unsharp reality based on a quantifiable degree of reality whereby systems can possess generalized properties jointly, whereas related sharp properties cannot be so possessed (Busch and Jaeger in Found Phys 40:1341, 2010). Here, the work leading up to the formalization of this notion to which he made great contributions is reviewed and explicated in relation to Heisenberg’s notions of potentiality and actuality. The notion of unsharp reality is then extended further by the introduction of a distinction between actual and actualizable elements of reality based on these mathematical innovations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. From here forward, we will also call such representatives “properties,” as a matter of shorthand.

  2. It should be noted here that this move does not render the unsharp-reality approach and modal approach in the usual sense of that term, in that the move does not require the postulation of an addition sort of system state beyond the quantum state and, a forteriori, no additional definite states of properties as in modal approaches to quantum mechanics. Indeed, the unsharpness central to the approach taken here is understood as a denial of such definite property values.

References

  1. Heisenberg, W.: Ueber den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik. Z. Physik 43, 172 (1927)

    Article  ADS  MATH  Google Scholar 

  2. Heisenberg, W.: The development of the interpretation of the quantum theory. In: Pauli, W. (ed.) The Philosophy of Quantum Mechanics. Pergammon, London (1955)

    Google Scholar 

  3. d’Espagnat, B.: On Physics and Philosophy, p. 225. Princeton University Press, Princeton (2006)

    Google Scholar 

  4. Einstein, A., Podolsky, B., Rosen, N.: Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47, 777 (1935)

    Article  ADS  MATH  Google Scholar 

  5. Shimony, A.: Search for a Naturalistic World View, vol. II. Cambridge University Press, Cambridge (1993)

    Book  Google Scholar 

  6. Jaeger, G.: ‘’Wave-packet Reduction” and the quantum character of the actualization of potentia. Entropy 19, 51 (2017)

    Article  MathSciNet  Google Scholar 

  7. Jaeger, G.: Quantum potentiality revisted. Philos. Trans. R. Soc. Lond. A 375, 20160390 (2017)

    Article  ADS  MATH  Google Scholar 

  8. Busch, P., Jaeger, G.: Unsharp quantum reality. Found. Phys. 40, 1341 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Busch, P., Lahti, P., Mittelstaedt, P.: The Quantum Theory of Measurement, 2nd edn. Springer, Berlin (1996)

    MATH  Google Scholar 

  10. Dirac, P.A.M.: The Principles of Quantum Mechanics. Clarendon Press, Oxford (1930)

    MATH  Google Scholar 

  11. Dirac, P.A.M.: Quantum Mechanics, 4th edn. Oxford University Press, Oxford (1958)

    MATH  Google Scholar 

  12. Gilton, M.J.R.: Whence the Eigenstate-eigenvalue Link? Stud. Hist. Philos. Mod. Phys. 55, 92–100 (2016)

    Article  MathSciNet  Google Scholar 

  13. Bub, J.: Interpreting the Quantum World. Cambridge University Press, Cambridge (1997)

    MATH  Google Scholar 

  14. Busch, P., Grabowski, M., Lahti, P.: Repeatable measurements in quantum theory. Found. Phys. 25, 1239 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  15. Busch, P.: Can quantum mechanical reality be considered sharp? In: Lahti, P., Mittelstaedt, P. (eds.) Symposium on the Foundations of Modern Physics 1985. World Scientific, Singapore (1985)

    Google Scholar 

  16. Busch, P.: Unsharp reality and joint measurements for spin observables. Phys. Rev. D. 33, 2253 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  17. Heisenberg, W.: Physics and Philosophy. Harper and Row, New York (1958)

    Google Scholar 

  18. Heisenberg, W.: Die Plancksche Entdeckung und die philosophischen Probleme der Atomphysik. Universitas 14, 135 (1959)

    Google Scholar 

  19. Misra, B.: A new concept of quantal state. In: Enz, C.P., Mehra, J. (eds.) Physical Reality and Mathematical Description. Reidel, Dordrecht (1974)

    Google Scholar 

  20. Bugajski, S.: Nonlinear quantum mechanics is a classical theory. Int. J. Theor. Phys. 30, 961 (1991)

    Article  Google Scholar 

  21. Bugajski, S.: Classical frames for a quantum theory—a bird’s-eye view. Int. J. Theor. Phys. 32, 969 (1993)

    Article  MathSciNet  Google Scholar 

  22. Bugajski, S.: Fundamentals of fuzzy probability theory. Int. J. Theor. Phys. 35, 2229 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  23. Stulpe, W., Busch, P.: The structure of classical extensions of quantum probability theory. J. Math. Phys. 49, 032104 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. Bugajski, S.: Fundamentals of fuzzy probability theory. Int. J. Theor. Phys. 35, 2229 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  25. Busch, P., Grabowski, M., Lahti, P.J.: Operational Quantum Physics. Springer, Berlin (1995)

    Book  MATH  Google Scholar 

  26. Busch, P., Heinonen, T., Lahti, P.: Heisenberg’s uncertainty principle. Phys. Rep. 452, 155 (2007)

    Article  ADS  Google Scholar 

  27. Birkhoff, G., von Neumann, J.: The logic of quantum mechanics. Ann. Math. 37, 823 (1936)

    Article  MathSciNet  MATH  Google Scholar 

  28. Jaeger, G.: Potentiality and causation. AIP Conf. Proc. 1424, 387 (2012)

    Article  ADS  Google Scholar 

  29. Busch, P., Lahti, P., Werner, R.: Proof of Heisenberg’s error-disturbance relation. Phys. Rev. Lett. 111, 160405 (2013)

    Article  ADS  Google Scholar 

  30. Heisenberg, W.: Sprache und Wirklichkeit in der modernen Physik. Wort und Wirklichkeit 1, 32 (1960)

    Google Scholar 

  31. Heisenberg, W.: The development of the interpretation of the quantum theory. In: Pauli, W. (ed.) Niels Bohr and the Development of Physics. Pergammon, London (1955)

    Google Scholar 

  32. Jaeger, G.: Developments in quantum probability and the copenhagen approach. Entropy 20, 420 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  33. Pauli, W.: Wellenmechanik. In: Handbuch der Physik, Band 24, I, 120 (1933)

  34. Busch, P., Pearson, D.: Error and unsharpness in approximate joint measurements of position and momentum (2014). arXiv:1405.6956

  35. Jaeger, G.: Are virtual particles less real? Entropy 21, 141 (2018)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregg Jaeger.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jaeger, G. Quantum Unsharpness, Potentiality, and Reality. Found Phys 49, 663–676 (2019). https://doi.org/10.1007/s10701-019-00273-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10701-019-00273-z

Keywords

Navigation