Abstract
Paul Busch argued that the positive operator (valued) measure, a generalization of the standard quantum observable, enables a consistent notion of unsharp reality based on a quantifiable degree of reality whereby systems can possess generalized properties jointly, whereas related sharp properties cannot be so possessed (Busch and Jaeger in Found Phys 40:1341, 2010). Here, the work leading up to the formalization of this notion to which he made great contributions is reviewed and explicated in relation to Heisenberg’s notions of potentiality and actuality. The notion of unsharp reality is then extended further by the introduction of a distinction between actual and actualizable elements of reality based on these mathematical innovations.
Similar content being viewed by others
Notes
From here forward, we will also call such representatives “properties,” as a matter of shorthand.
It should be noted here that this move does not render the unsharp-reality approach and modal approach in the usual sense of that term, in that the move does not require the postulation of an addition sort of system state beyond the quantum state and, a forteriori, no additional definite states of properties as in modal approaches to quantum mechanics. Indeed, the unsharpness central to the approach taken here is understood as a denial of such definite property values.
References
Heisenberg, W.: Ueber den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik. Z. Physik 43, 172 (1927)
Heisenberg, W.: The development of the interpretation of the quantum theory. In: Pauli, W. (ed.) The Philosophy of Quantum Mechanics. Pergammon, London (1955)
d’Espagnat, B.: On Physics and Philosophy, p. 225. Princeton University Press, Princeton (2006)
Einstein, A., Podolsky, B., Rosen, N.: Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47, 777 (1935)
Shimony, A.: Search for a Naturalistic World View, vol. II. Cambridge University Press, Cambridge (1993)
Jaeger, G.: ‘’Wave-packet Reduction” and the quantum character of the actualization of potentia. Entropy 19, 51 (2017)
Jaeger, G.: Quantum potentiality revisted. Philos. Trans. R. Soc. Lond. A 375, 20160390 (2017)
Busch, P., Jaeger, G.: Unsharp quantum reality. Found. Phys. 40, 1341 (2010)
Busch, P., Lahti, P., Mittelstaedt, P.: The Quantum Theory of Measurement, 2nd edn. Springer, Berlin (1996)
Dirac, P.A.M.: The Principles of Quantum Mechanics. Clarendon Press, Oxford (1930)
Dirac, P.A.M.: Quantum Mechanics, 4th edn. Oxford University Press, Oxford (1958)
Gilton, M.J.R.: Whence the Eigenstate-eigenvalue Link? Stud. Hist. Philos. Mod. Phys. 55, 92–100 (2016)
Bub, J.: Interpreting the Quantum World. Cambridge University Press, Cambridge (1997)
Busch, P., Grabowski, M., Lahti, P.: Repeatable measurements in quantum theory. Found. Phys. 25, 1239 (1995)
Busch, P.: Can quantum mechanical reality be considered sharp? In: Lahti, P., Mittelstaedt, P. (eds.) Symposium on the Foundations of Modern Physics 1985. World Scientific, Singapore (1985)
Busch, P.: Unsharp reality and joint measurements for spin observables. Phys. Rev. D. 33, 2253 (1986)
Heisenberg, W.: Physics and Philosophy. Harper and Row, New York (1958)
Heisenberg, W.: Die Plancksche Entdeckung und die philosophischen Probleme der Atomphysik. Universitas 14, 135 (1959)
Misra, B.: A new concept of quantal state. In: Enz, C.P., Mehra, J. (eds.) Physical Reality and Mathematical Description. Reidel, Dordrecht (1974)
Bugajski, S.: Nonlinear quantum mechanics is a classical theory. Int. J. Theor. Phys. 30, 961 (1991)
Bugajski, S.: Classical frames for a quantum theory—a bird’s-eye view. Int. J. Theor. Phys. 32, 969 (1993)
Bugajski, S.: Fundamentals of fuzzy probability theory. Int. J. Theor. Phys. 35, 2229 (1996)
Stulpe, W., Busch, P.: The structure of classical extensions of quantum probability theory. J. Math. Phys. 49, 032104 (2008)
Bugajski, S.: Fundamentals of fuzzy probability theory. Int. J. Theor. Phys. 35, 2229 (1996)
Busch, P., Grabowski, M., Lahti, P.J.: Operational Quantum Physics. Springer, Berlin (1995)
Busch, P., Heinonen, T., Lahti, P.: Heisenberg’s uncertainty principle. Phys. Rep. 452, 155 (2007)
Birkhoff, G., von Neumann, J.: The logic of quantum mechanics. Ann. Math. 37, 823 (1936)
Jaeger, G.: Potentiality and causation. AIP Conf. Proc. 1424, 387 (2012)
Busch, P., Lahti, P., Werner, R.: Proof of Heisenberg’s error-disturbance relation. Phys. Rev. Lett. 111, 160405 (2013)
Heisenberg, W.: Sprache und Wirklichkeit in der modernen Physik. Wort und Wirklichkeit 1, 32 (1960)
Heisenberg, W.: The development of the interpretation of the quantum theory. In: Pauli, W. (ed.) Niels Bohr and the Development of Physics. Pergammon, London (1955)
Jaeger, G.: Developments in quantum probability and the copenhagen approach. Entropy 20, 420 (2018)
Pauli, W.: Wellenmechanik. In: Handbuch der Physik, Band 24, I, 120 (1933)
Busch, P., Pearson, D.: Error and unsharpness in approximate joint measurements of position and momentum (2014). arXiv:1405.6956
Jaeger, G.: Are virtual particles less real? Entropy 21, 141 (2018)
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Jaeger, G. Quantum Unsharpness, Potentiality, and Reality. Found Phys 49, 663–676 (2019). https://doi.org/10.1007/s10701-019-00273-z
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10701-019-00273-z