Abstract
In-principle restrictions on the amount of information that can be gathered about a system have been proposed as a foundational principle in several recent reconstructions of the formalism of quantum mechanics. However, it seems unclear precisely why one should be thus restricted. We investigate the notion of paradoxical self-reference as a possible origin of such epistemic horizons by means of a fixed-point theorem in Cartesian closed categories due to Lawvere that illuminates and unifies the different perspectives on self-reference.
This is a preview of subscription content, access via your institution.
References
Barrow, J.D., Davies, P.C.W., Harper Jr., C.L.: Science and Ultimate Reality: Quantum Theory, Cosmology, and Complexity. Cambridge University Press, Cambridge (2004)
Grinbaum, A.: Elements of information-theoretic derivation of the formalism of quantum theory. Int. J. Quantum Inf. 1(03), 289–300 (2003)
Rovelli, C.: Relational quantum mechanics. Int. J. Theor. Phys. 35(8), 1637–1678 (1996)
Brukner, Č., Zeilinger, A.: Information and fundamental elements of the structure of quantum theory. In: Castell, L., Ischebeck, O. (eds.) Time, Quantum and Information, pp. 323–354. Springer, Berlin (2003)
Fuchs, C. A.: Quantum mechanics as quantum information (and only a little more) (2002). arXiv:quant-ph/0205039
Masanes, L., Müller, M.P., Augusiak, R., Pérez-García, D.: Existence of an information unit as a postulate of quantum theory. Proc. Natl. Acad. Sci. 110(41), 16373–16377 (2013)
Höhn, P.A., Wever, C.S.P.: Quantum theory from questions. Phys. Rev. A 95(1), 012102 (2017)
von Weizsäcker, C.F., Görnitz, T., Lyre, H.: The Structure of Physics. Springer, Berlin (2006)
Spekkens, R.W.: Evidence for the epistemic view of quantum states: a toy theory. Phys. Rev. A 75(3), 032110 (2007)
Curtright, T.L., Zachos, C.K.: Quantum mechanics in phase space. Asia Pac. Phys. Newsl. 1(01), 37–46 (2012)
Grinbaum, A.: Information-theoretic princple entails orthomodularity of a lattice. Found. Phys. Lett. 18(6), 563–572 (2005)
Birkhoff, G., von Neumann, J.: The logic of quantum mechanics. Ann. Math. 37, 823–843 (1936)
Chaitin, G.J.: Undecidability and randomness in pure mathematics. In: Cornwell, J. (ed.) Information, Randomness & Incompleteness, pp. 307–313. World Scientific, Singapore (1990)
Yurtsever, U.: Quantum mechanics and algorithmic randomness. Complexity 6(1), 27–34 (2000)
Bendersky, A., Senno, G., de la Torre, G., Figueira, S., Acin, A.: Nonsignaling deterministic models for nonlocal correlations have to be uncomputable. Phys. Rev. Lett. 118(13), 130401 (2017)
Calude, C.S., Svozil, K.: Quantum randomness and value indefiniteness. Adv. Sci. Lett. 1(2), 165–168 (2008)
Kochen, S., Specker, E.P.: The problem of hidden variables in quantum mechanics. J. Math. Mech. 17, 59–87 (1969)
Feynman, R.P.: Simulating physics with computers. Int. J. Theor. Phys. 21(6–7), 467–488 (1982)
Edis, T.: How Gödel’s theorem supports the possibility of machine intelligence. Minds Mach. 8(2), 251–262 (1998)
Chaitin, G.J.: A theory of program size formally identical to information theory. J. ACM 22(3), 329–340 (1975)
Turing, A.M.: On computable numbers, with an application to the Entscheidungsproblem. J. Math. 58(345–363), 5 (1936)
Calude, C.S., Hertling, P.H., Khoussainov, B., Wang, Y.: Recursively enumerable reals and Chaitin \(\Omega \) numbers. In: Annual Symposium on Theoretical Aspects of Computer Science, pp. 596–606. Springer, Berlin (1998)
Svozil, K.: Randomness and Undecidability in Physics. World Scientific, Singapore (1993)
Svozil, K.: Physical (A)Causality. Fundamental Theories of Physics, vol. 192. Springer, Cham (2018)
Gödel, K.: Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme I. Monatshefte für Mathematik und Physik 38(1), 173–198 (1931)
Howard, W.A.: The formulae-as-types notion of construction. In: Seldin, J.P., Hindley, J.R. (eds.) To HB Curry: Essays on Combinatory Logic, Lambda Calculus and Formalism, pp. 479–490. Academic Press, London (1980)
Bennett, C.H.: Logical reversibility of computation. IBM J. Res. Dev. 17(6), 525–532 (1973)
Chaitin, G.J.: Gödel’s theorem and information. Int. J. Theor. Phys. 21(12), 941–954 (1982)
Cubitt, T.S., Perez-Garcia, D., Wolf, M.M.: Undecidability of the spectral gap. Nature 528(7581), 207–211 (2015)
Berger, R.: The Undecidability of the Domino Problem, vol. 66. American Mathematical Society, Providence (1966)
Lloyd, S.: Quantum-mechanical computers and uncomputability. Phys. Rev. Lett. 71(6), 943 (1993)
Lloyd, S.: Necessary and sufficient conditions for quantum computation. J. Mod. Opt. 41(12), 2503–2520 (1994)
Eisert, J., Müller, M.P., Gogolin, C.: Quantum measurement occurrence is undecidable. Phys. Rev. Lett. 108(26), 260501 (2012)
Popper, K.R.: Indeterminism in quantum physics and in classical physics. Part I. Br. J. Philos. Sci. 1(2), 117–133 (1950)
Rothstein, J.: Thermodynamics and some undecidable physical questions. Philos. Sci. 31(1), 40–48 (1964)
Fuchs, C.A.: On participatory realism. In: Durham, I.T., Rickles, D. (eds.) Information and Interaction, pp. 113–134. Springer, Berlin (2017)
Wheeler, J.: Add “Participant” to “Undecidable Propositions” to arrive at Physics (1974). https://jawarchive.files.wordpress.com/2012/03/twa-1974.pdf
Bernstein, J.: Quantum Profiles. Princeton University Press, Princeton (1991)
Chiara, M.L.D.: Logical self reference, set theoretical paradoxes and the measurement problem in quantum mechanics. J. Philos. Logic 6(1), 331–347 (1977)
Breuer, T.: The impossibility of accurate state self-measurements. Philos. Sci. 62, 197–214 (1995)
Breuer, T., von Neumann met Kurt Gödel, J.: Undecidable statements in quantum mechanics. In: Chiara, M.L.D., Giuntini, R., Laudisa, F. (eds.) Language. Quantum, Music: Selected Contributed Papers of the Tenth International Congress of Logic, Methodology and Philosophy of Science, Florence, August 1995, pp. 159–170. Springer, Dordrecht (1999)
Aerts, S.: Undecidable classical properties of observers. Int. J. Theor. Phys. 44(12), 2113–2125 (2005)
Zwick, M.: Quantum measurement and Gödel’s proof. Specul. Sci. Technol. 1(2), I978 (1978)
Peres, A., Zurek, W.H.: Is quantum theory universally valid? Am. J. Phys. 50(9), 807–810 (1982)
Brukner, Č.: Quantum complementarity and logical indeterminacy. Nat. Comput. 8(3), 449–453 (2009)
Paterek, T., Kofler, J., Prevedel, R., Klimek, P., Aspelmeyer, M., Zeilinger, A., Brukner, Č.: Logical independence and quantum randomness. New J. Phys. 12(1), 013019 (2010)
Calude, C.S., Jürgensen, H.: Is complexity a source of incompleteness? Adv. Appl. Math. 1(35), 1–15 (2005)
Calude, C.S., Stay, M.A.: From Heisenberg to Gödel via Chaitin. Int. J. Theor. Phys. 46(8), 2013–2025 (2007)
Lawvere, F.W.: Diagonal arguments and Cartesian closed categories. In: Hilton, P.J. (ed.) Category Theory, Homology Theory and Their Applications II, pp. 134–145. Springer, Berlin (1969)
Yanofsky, N.S.: A universal approach to self-referential paradoxes, incompleteness and fixed points. Bull. Symb. Log. 9(03), 362–386 (2003)
Cantor, G.: Über eine elementare Frage der Mannigfaltigkeitslehre. Jahresbericht der Deutschen Mathematiker-Vereinigung 1, 75–78 (1892)
Russell, B.: Letter to Frege. In: van Heijenoort, J. (ed.) From Frege to Gödel: A Source Book in Mathematical Logic, 1879–1931. Harvard University Press, Cambridge (1967)
Tarski, A.: Der Wahrheitsbegriff in den formalisierten Sprachen. Studia Philos. 1, 261–405 (1936)
Russell, B.: Mathematical logic as based on the theory of types. Am. J. Math. 30(3), 222–262 (1908)
Ord, T., Kieu, T.D.: The diagonal method and hypercomputation. Br. J. Philos. Sci. 56(1), 147–156 (2005)
De Broglie, L.: La mécanique ondulatoire et la structure atomique de la matière et du rayonnement. J. Phys. Radium 8(5), 225–241 (1927)
Bohm, D.: A suggested interpretation of the quantum theory in terms of “hidden” variables, i and ii. Phys. Rev. 85(2), 166 (1952)
Valentini, A.: Signal-locality in hidden-variables theories. Phys. Lett. A 297(5–6), 273–278 (2002)
Karrass, Abraham: Some remarks on the infinite symmetric groups. Math. Z. 66(1), 64–69 (1956)
Richard, J.: Les Principes des Mathématiques et le Problème des Ensembles. In: van Heijenoort, J. (ed.) From Frege to Gödel: A Source Book in Mathematical Logic, 1879–1931. Harvard University Press, Cambridge (1967)
Wootters, W.K., Zurek, W.H.: A single quantum cannot be cloned. Nature 299(5886), 802–803 (1982)
Svozil, K.: A constructivist manifesto for the physical sciences-constructive re-interpretation of physical undecidability. In: Kohler, E., Stadler, F. (eds.) The Foundational Debate, pp. 65–88. Springer, Dordrecht (1995)
Kolmogorov, A.N.: On tables of random numbers. Sankhyā 25, 369–376 (1963)
Levin, L.: On the notion of a random sequence. Sov. Math. Dokl. 14, 1413–1416 (1973)
Schnorr, C.-P.: Process complexity and effective random tests. J. Comput. Syst. Sci. 7(4), 376–388 (1973)
Chaitin, G.J.: Information-theoretic incompleteness. Appl. Math. Comput. 52(1), 83–101 (1992)
Shimony, A.: Metaphysical problems in the foundations of quantum mechanics. Int. Philos. Q. 18(1), 3–17 (1978)
Bohr, N.: The causality problem in atomic physics. New Theor. Phys. 147, 11–30 (1939)
Svozil, K.: Undecidability everywhere? In: Casti, J.L., Karlqvist, A. (eds.) Boundaries and Barriers: On the Limits to Scientific Knowledge, pp. 215–237. Basic Books, New York (1996)
von Neumann, J.: Mathematical Foundations of Quantum Mechanics, vol. 2. Princeton University Press, Princeton (1955)
Van den Nest, M., Briegel, H.J.: Measurement-based quantum computation and undecidable logic. Found. Phys. 38(5), 448–457 (2008)
Baez, J.C.: Quantum quandaries: a category-theoretic perspective. In: Rickles, R.C., French, S.R., Saatsi, J.T. (eds.) Structural Foundations of Quantum Gravity, pp. 240–267. Oxford University Press, Oxford (2006)
Baez, J., Stay, M.: Physics, topology, logic and computation: a Rosetta Stone. In: Coecke, R. (ed.) New Structures for Physics, pp. 95–172. Springer, Berlin (2010)
Acknowledgements
My first and foremost thanks is due to Dagmar Bruß and Hermann Kampermann, whose guidance and tutelage I had the great privilege to receive, and who have been instrumental in the sharpening of the ideas presented here. Furthermore, I wish to thank Karl Svozil and Noson Yanofsky for invaluable discussion of the material compiled in this article.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Szangolies, J. Epistemic Horizons and the Foundations of Quantum Mechanics. Found Phys 48, 1669–1697 (2018). https://doi.org/10.1007/s10701-018-0221-9
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10701-018-0221-9
Keywords
- Quantum foundations
- Diagonal arguments
- Self-reference