Skip to main content

From Classical to Quantum Models: The Regularising Rôle of Integrals, Symmetry and Probabilities

Abstract

In physics, one is often misled in thinking that the mathematical model of a system is part of or is that system itself. Think of expressions commonly used in physics like “point” particle, motion “on the line”, “smooth” observables, wave function, and even “going to infinity”, without forgetting perplexing phrases like “classical world” versus “quantum world”.... On the other hand, when a mathematical model becomes really inoperative in regard with correct predictions, one is forced to replace it with a new one. It is precisely what happened with the emergence of quantum physics. Classical models were (progressively) superseded by quantum ones through quantization prescriptions. These procedures appear often as ad hoc recipes. In the present paper, well defined quantizations, based on integral calculus and Weyl–Heisenberg symmetry, are described in simple terms through one of the most basic examples of mechanics. Starting from (quasi-) probability distribution(s) on the Euclidean plane viewed as the phase space for the motion of a point particle on the line, i.e., its classical model, we will show how to build corresponding quantum model(s) and associated probabilities (e.g. Husimi) or quasi-probabilities (e.g. Wigner) distributions. We highlight the regularizing rôle of such procedures with the familiar example of the motion of a particle with a variable mass and submitted to a step potential.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

Notes

  1. An apodization function (also called a tapering function or window function) is a function used to smoothly bring a sampled signal down to zero at the edges of the sampled region

References

  1. Inönü, E., Wigner, E.: Representations of the Galilei group. Nuovo Cimento 9, 705–718 (1952)

    MathSciNet  Article  Google Scholar 

  2. Wightman, A.S.: On the localizibility of quantum mechanical systems. Rev. Mod. Phys. 34, 845–872 (1962)

    ADS  MathSciNet  Article  Google Scholar 

  3. Berezin, F.A.: Quantization. Mathematics of the USSR-Izvestiya 8(5), 1109–1165 (1974)

    ADS  Article  Google Scholar 

  4. Berezin, F.A.: General concept of quantization. Commun. Math. Phys. 40, 153–174 (1975)

    ADS  MathSciNet  Article  Google Scholar 

  5. Ali, S.T., Engliš, M.: Quantization methods: a guide for physicists and analysts. Rev. Math. Phys. 17, 391 (2005)

    MathSciNet  Article  Google Scholar 

  6. Landsman, N.P.: Between classical and quantum. In: Earman, J., Butterfield, J. (eds.) Philosophy of Physics, Handbook of the Philosophy of Science, vol. 2. Elsevier, Amsterdam (2006)

    Google Scholar 

  7. Combescure, M., Robert, D.: Coherent States and Applications in Mathematical Physics, Theoretical and Mathematical Physics. Springer, Dordrecht (2012)

    MATH  Google Scholar 

  8. de Gosson, M.: Born-Jordan Quantization, Fundamental Theories of Physics, vol. 182. Springer, Cham (2016)

    Book  Google Scholar 

  9. Bergeron, H., Gazeau, J.P., Youssef, A.: Are the Weyl and coherent state descriptions physically equivalent? Phys. Lett. A 377, 598–605 (2013)

    ADS  MathSciNet  Article  Google Scholar 

  10. Barut, A.O., Ra̧czka, R.: Theory of Group Representations and Applications. PWN, Warszawa (1977)

    Google Scholar 

  11. von Neumann, J.: Die eindeutigkeit der Schröderschen Operatoren. Math. Ann. 104, 570–578 (1931)

    MathSciNet  Article  Google Scholar 

  12. von Neumann, J.: Mathematical foundations of quantum mechanics. Princeton University Press, Princeton (1955)

    MATH  Google Scholar 

  13. Perelomov, A.M.: Generalized Coherent States and Their Applications. Springer, Berlin (1986)

    Book  Google Scholar 

  14. Bergeron, H., Gazeau, J.-P.: Integral quantizations with two basic examples. Ann. Phys. (NY) 344, 43–68 (2014)

    ADS  MathSciNet  Article  Google Scholar 

  15. Bergeron, H., Curado, E.M.F., Gazeau, J.-P., Rodrigues, Ligia M.C.S.: Weyl-Heisenberg integral quantization(s): a compendium (2017). arXiv:1703.08443 [quant-ph]

  16. Cohen, L.: Generalized phase-space distribution functions. J. Math. Phys. 7, 781–786 (1966)

    ADS  MathSciNet  Article  Google Scholar 

  17. Cohen, L.: The Weyl Operator and Its Generalization. Pseudo-Differential Operators: Theory and Applications, vol. 9. Birkhaüser, Basel (2013)

    Book  Google Scholar 

  18. Agarwal, B.S., Wolf, E.: Calculus for functions of noncommuting operators and general phase-space methods in quantum mechanics. Phys. Rev. D 2, 2161, (I), 2187 (II), 2206 (III) (1970)

  19. Akhiezer, N.I., Glazman, I.M.: Theory of Linear Operators in Hilbert Space. Pitman, Boston (1981)

    MATH  Google Scholar 

  20. Lévy-Leblond, J.-M.: The pedagogical role and epistemological significance of group theory in quantum mechanics. Riv. Nuovo Cimento 4, 99–143 (1974)

    MathSciNet  Article  Google Scholar 

  21. Lévy-Leblond, J.M.: Elementary quantum models with position-dependent mass. Eur. J. Phys. 13, 215–218 (1992)

    Article  Google Scholar 

  22. Lévy-Leblond, J.M.: Position-dependent effective mass and Galilean invariance. Phys. Rev. A 52, 1845–1849 (1995)

    ADS  MathSciNet  Article  Google Scholar 

  23. Cordero, E., de Gosson, M. Nicola, F.: On the invertibility of Born-Jordan quantization. arXiv:1507.00144 [math.FA]

  24. Abramowitz, M., Stegun, I.A. (eds.): Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing. Dover, New York (1972)

    MATH  Google Scholar 

  25. Gazeau, J.-P., Murenzi, R.: Covariant affine integral quantization(s). J. Math. Phys. 57, 052102 (2016)

    ADS  MathSciNet  Article  Google Scholar 

  26. Almeida, C.R., Bergeron, H., Gazeau, J.-P., Scardua, A.C.: Three examples of quantum dynamics on the half-line with smooth bouncing. Ann. Phys. 392, 206–228 (2018)

    ADS  MathSciNet  Article  Google Scholar 

  27. Fresneda, R., Gazeau, J.-P., Noguera, D.: Quantum localisation on the circle. J. Math. Phys. 59, 052105 (2018)

    ADS  MathSciNet  Article  Google Scholar 

  28. Gazeau, J.-P., Koide, T., Murenzi, R.: More quantum repulsive effect in rotating frame. EPL 118, 50004 (2017)

    ADS  Article  Google Scholar 

  29. Gazeau, J.-P., Koide, T.: Quantum motion on the half-line from Weyl-Heisenberg integral quantization (in preparation)

Download references

Acknowledgements

The author is indebted to the Centro Brasileiro de Pesquisas Físicas (Rio de Janeiro) and CNPq Agency (Brazil), and the Institute for Research in Fundamental Sciences (IPM, Tehran) for financial support. He also thanks the CBPF and the IPM for hospitality. He is grateful to Evaldo M.F. Curado (CBPF) for valuable comments on the content of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Pierre Gazeau.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gazeau, JP. From Classical to Quantum Models: The Regularising Rôle of Integrals, Symmetry and Probabilities. Found Phys 48, 1648–1667 (2018). https://doi.org/10.1007/s10701-018-0219-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10701-018-0219-3

Keywords

  • Quantum Model
  • Heisenberg Weyl (WH)
  • Phase Space Geometry
  • Integrable Quantum
  • Variable Mass Particle