The central conception of all modern physics is the “Hamiltonian”
Erwin Schrodinger
Abstract
Energy is a crucial concept within classical and quantum physics. An essential tool to quantify energy is the Hamiltonian. Here, we consider how to define a Hamiltonian in general probabilistic theories—a framework in which quantum theory is a special case. We list desiderata which the definition should meet. For 3-dimensional systems, we provide a fully-defined recipe which satisfies these desiderata. We discuss the higher dimensional case where some freedom of choice is left remaining. We apply the definition to example toy theories, and discuss how the quantum notion of time evolution as a phase between energy eigenstates generalises to other theories.
This is a preview of subscription content, access via your institution.




Notes
- 1.
By n-dimensional theories, we mean those where normalized states are determined by n real degrees of freedom.
- 2.
- 3.
Geometrically, the set of normalized states correspond to a hyperplane intersection with the cone of all states.
- 4.
- 5.
Without time-independence, this map is not necessarily homomorphic. E.g. composition of evolutions for 3 seconds and for 5 seconds is equivalent to evolving the system for 8 seconds only if “5 seconds of evolution” corresponds to the same group element whether the evolution begins at time \(t=0\) or at time \(t=3\;{\mathrm{seconds}}\).
- 6.
For time-dependent A, one integrates Eq. (19) into a time-ordered exponential: \(M(\tau ) = \mathcal {T}\left\{ \exp \left[ \int _0^\tau A(t)\, \mathrm{d}t \right] \right\} \), where \(\mathcal {T}(\cdot )\) denotes that every term in the expansion of the exponent only appears in increasing time order. This explicit ordering is necessary since in general A(t) and \(A(t')\) might not commute at different times.
- 7.
[13] use an inverse statement of GEN, and consider the “observability of energy” as a postulate for quantum theory. Namely, they specify that the generator of dynamics should be able to uniquely determine an observable. On top of a set of axioms that restricts theories to Jordan algebras, this uniquely singles out quantum theory.
- 8.
Allowed means that the transformation maps all states to states and satisfies any other constraints that are part of the theory.
- 9.
As a pathological example, consider a three level system where \(E_1 = 0\), and \(E_3 = 2 E_2\); a transformation from a state \(\vec {\rho }\) with well-defined energy in \(E_2\) (
) to \(\rho '\) where
would satisfy INV but not INV*.
- 10.
This does not mean that there are no phase dynamics—take for instance the Aharonov-Bohm effect in quantum theory, whereby some global operation induces phases between branches. However, in quantum theory, a transformation with statistically identical action on the states can also be induced by putting pieces of glass on each individual branch; in box-world, a global transformation akin to the Aharonov–Bohm effect is permissible, whereas the analogous local construction that induces the same phase transformation is not possible.
References
- 1.
Hankins, T.L.: Sir William Rowan Hamilton, p. 64. Johns Hopkins University Press, Baltimore (1980)
- 2.
Coopersmith, J.: Energy, the Subtle Concept: The Discovery of Feynman’s Blocks from Leibniz to Einstein. Oxford University Press, Oxford (2010)
- 3.
Arnold, V.I.: Mathematical Methods of Classical Mechanics. Graduate Texts in Mathematics, vol. 60. Springer, New York (1989)
- 4.
Cohen-Tannoudji, C., Diu, B., Laloe, F.: Quantum Mechanics. Wiley, New York (1977)
- 5.
Hardy, L.: Quantum theory from five reasonable axioms (2001). arXiv:quant-ph/0101012
- 6.
Barrett, J.: Information processing in generalized probabilistic theories. Phys. Rev. A 75(3), 032304 (2007). https://doi.org/10.1103/PhysRevA.75.032304
- 7.
Masanes, L., Müller, M.P.: A derivation of quantum theory from physical requirements. New J. Phys. 13(6), 063001 (2011). https://doi.org/10.1088/1367-2630/13/6/063001
- 8.
Janotta, P., Hinrichsen, H.: Generalized probability theories: what determines the structure of quantum theory? J. Phys. A 47(32), 323001 (2014). https://doi.org/10.1088/1751-8113/47/32/323001
- 9.
Popescu, S., Rohrlich, D.: Quantum nonlocality as an axiom. Found. Phys. 24(3), 379–385 (1994). https://doi.org/10.1007/BF02058098
- 10.
Hardy, L.: Reformulating and reconstructing quantum theory (2011). arXiv:1104.2066 [gr-qc, physics:hep-th, physics:quant-ph]
- 11.
Dakić, B., Brukner, Č.: Quantum theory and beyond: is entanglement special? In: Hans, H. (ed.) Deep Beauty: Understanding the Quantum World Through Mathematical, pp. 365–392. Cambridge University Press, Cambridge (2011)
- 12.
Chiribella, G.: DAriano, G.M., Perinotti, P.: Informational derivation of quantum theory. Phys. Rev. A 84(1), 012311 (2011). https://doi.org/10.1103/PhysRevA.84.012311
- 13.
Barnum, H., Müller, M.P., Ududec, C.: Higher-order interference and single-system postulates characterizing quantum theory. N. J. Phys. 16(12), 123029 (2014). https://doi.org/10.1088/1367-2630/16/12/123029
- 14.
Barnum, H., Barrett, J., Leifer, M., Wilce, A.: Cloning and broadcasting in generic probabilistic theories (2006). arXiv:quant-ph/0611295
- 15.
Chiribella, G., Scandolo, C.M.: Entanglement as an axiomatic foundation for statistical mechanics (2016). arXiv:1608.04459 [quant-ph]
- 16.
Barrett, J., Hardy, L., Kent, A.: No signaling and quantum key distribution. Phys. Rev. Lett. 95(1), 010503 (2005). https://doi.org/10.1103/PhysRevLett.95.010503
- 17.
Acín, A., Gisin, N., Masanes, L.: From Bell’s theorem to secure quantum key distribution. Phys. Rev. Lett. 97(12), 120405 (2006). https://doi.org/10.1103/PhysRevLett.97.120405
- 18.
Acín, A., Brunner, N., Gisin, N., Massar, S., Pironio, S., Scarani, V.: Device-independent security of quantum cryptography against collective attacks. Phys. Rev. Lett. 98(23), 230501 (2007). https://doi.org/10.1103/PhysRevLett.98.230501
- 19.
Short, A.J., Wehner, S.: Entropy in general physical theories. N. J. Phys. 12(3), 033023 (2010). https://doi.org/10.1088/1367-2630/12/3/033023
- 20.
Barnum, H., Barrett, J., Clark, L.O., Leifer, M., Spekkens, R., Stepanik, N., Wilce, A., Wilke, R.: Entropy and information causality in general probabilistic theories. N. J. Phys. 12(3), 033024 (2010). https://doi.org/10.1088/1367-2630/12/3/033024
- 21.
Kimura, G., Nuida, K., Imai, H.: Distinguishability measures and entropies for general probabilistic theories. Rep. Math. Phys. 66(2), 175–206 (2010). https://doi.org/10.1016/S0034-4877(10)00025-X
- 22.
Müller, M.P., Dahlsten, O.C.O., Vedral, V.: Unifying typical entanglement and coin tossing: on randomization in probabilistic theories. Commun. Math. Phys. 316(2), 441–487 (2012). https://doi.org/10.1007/s00220-012-1605-x
- 23.
Chiribella, G., Scandolo, C.M.: Entanglement and thermodynamics in general probabilistic theories. N. J. Phys. 17(10), 103027 (2015). https://doi.org/10.1088/1367-2630/17/10/103027
- 24.
Barnum, H., Barrett, J., Krumm, M., Müller, M.P.: Entropy, majorization and thermodynamics in general probabilistic theories. Electron. Proc. Theor. Comput. Sci. 195, 43–58 (2015). https://doi.org/10.4204/EPTCS.195.4
- 25.
Chiribella, G., Scandolo, C.M.: Operational axioms for diagonalizing states. Electron. Proc. Theor. Comput. Sci. 195, 96–115 (2015). https://doi.org/10.4204/EPTCS.195.8
- 26.
Kimura, G., Ishiguro, J., Fukui, M.: Entropies in general probabilistic theories and their application to the Holevo bound. Phys. Rev. A 94(4), 042113 (2016). https://doi.org/10.1103/PhysRevA.94.042113
- 27.
Krumm, M., Barnum, H., Barrett, J., Müller, M.P.: Thermodynamics and the structure of quantum theory. N. J. Phys. 19(4), 043025 (2017). https://doi.org/10.1088/1367-2630/aa68ef
- 28.
Chiribella, G., Scandolo, C.M.: Microcanonical thermodynamics in general physical theories. N. J. Phys. 19(12), 123043 (2017). https://doi.org/10.1088/1367-2630/aa91c7
- 29.
Dahlsten, O.C.O., Garner, A.J.P., Thompson, J., Gu, M., Vedral, V.: Particle exchange in post-quantum theories (2013). arXiv:1307.2529 [quant-ph]
- 30.
Sorkin, R.D.: Quantum mechanics as quantum measure theory. Mod. Phys. Lett. A 09(33), 3119–3127 (1994). https://doi.org/10.1142/S021773239400294X
- 31.
Ududec, C., Barnum, H., Emerson, J.: Three slit experiments and the structure of quantum theory. Found. Phys. 41(3), 396–405 (2011). https://doi.org/10.1007/s10701-010-9429-z
- 32.
Garner, A.J.P., Dahlsten, O.C.O., Nakata, Y., Murao, M., Vedral, V.: A framework for phase and interference in generalized probabilistic theories. N. J. Phys. 15(9), 093044 (2013). https://doi.org/10.1088/1367-2630/15/9/093044
- 33.
Dahlsten, O.C.O., Garner, A.J.P., Vedral, V.: The uncertainty principle enables non-classical dynamics in an interferometer. Nat. Commun. 5, 4592 (2014). https://doi.org/10.1038/ncomms5592
- 34.
Garner, A.J.P., Müller, M.P., Dahlsten, O.C.O.: The complex and quaternionic quantum bit from relativity of simultaneity on an interferometer. Proc. R. Soc. A 473, 20170596 (2017). https://doi.org/10.1098/rspa.2017.0596
- 35.
Lee, C.M., Selby, J.H.: Higher-order interference in extensions of quantum theory. Found. Phys. 47(1), 89–112 (2017). https://doi.org/10.1007/s10701-016-0045-4
- 36.
Barnum, H., Lee, C.M., Scandolo, C.M., Selby, J.H.: Ruling out higher-order interference from purity principles. Entropy 19(6), 253 (2017). https://doi.org/10.3390/e19060253
- 37.
Lin, Y.L., Dahlsten, O.C.O.: Tunnelling necessitates negative Wigner function. arXiv:1607.01764 [quant-ph] (2016)
- 38.
Lee, C.M., Barrett, J.: Computation in generalised probabilisitic theories. N. J. Phys. 17(8), 083001 (2015). https://doi.org/10.1088/1367-2630/17/8/083001
- 39.
Lee, C.M., Selby, J.H.: Generalised phase kick-back: the structure of computational algorithms from physical principles. N. J. Phys. 18(3), 033023 (2016). https://doi.org/10.1088/1367-2630/18/3/033023
- 40.
Lee, C.M., Hoban, M.J.: Bounds on the power of proofs and advice in general physical theories. Proc. R. Soc. A 472(2190), 20160076 (2016). https://doi.org/10.1098/rspa.2016.0076
- 41.
Lee, C.M., Selby, J.H.: Deriving Grover’s lower bound from simple physical principles. N. J. Phys. 18(9), 093047 (2016). https://doi.org/10.1088/1367-2630/18/9/093047
- 42.
Barrett, J., de Beaudrap, N., Hoban, M.J., Lee, C.M.: The computational landscape of general physical theories (2017). arXiv:1702.08483 [quant-ph]
- 43.
Lee, C.M., Selby, J.H., Barnum, H..: Oracles and query lower bounds in generalised probabilistic theories (2017). arXiv:1704.05043 [quant-ph]
- 44.
Garner, A.J.P.: Interferometric computation beyond quantum theory. Found. Phys. (2018). https://doi.org/10.1007/s10701-018-0142-7
- 45.
Robertson, H.P.: The uncertainty principle. Phys. Rev. 34(1), 163–164 (1929). https://doi.org/10.1103/PhysRev.34.163
- 46.
Schrödinger, E.: Zum Heisenbergschen Unschrfeprinzip. Sitzungsberichte der Preussischen Akademie der Wissenschaften, Physikalisch-mathematische Klasse 14, 296–303 (1930)
- 47.
Hioe, F.T., Eberly, J.H.: $N$-level coherence vector and higher conservation laws in quantum optics and quantum mechanics. Phys. Rev. Lett. 47(12), 838–841 (1981). https://doi.org/10.1103/PhysRevLett.47.838
- 48.
Kimura, G.: The bloch vector for N-level systems. J. Phys. Soc. Jpn. 72(Suppl.C):185–188 (2003). https://doi.org/10.1143/JPSJS.72SC.185
- 49.
Bengtsson, I., Życzkowski, K.: Geometry of Quantum States: An Introduction to Quantum Entanglement. Cambridge University Press, Cambridge (2006)
- 50.
Bertlmann, R.A., Krammer, P.: Bloch vectors for qudits. J. Phys. A 41(23), 235303 (2008). https://doi.org/10.1088/1751-8113/41/23/235303
- 51.
Jakóbczyk, L., Siennicki, M.: Geometry of Bloch vectors in two-qubit system. Phys. Lett. A 286(6), 383–390 (2001). https://doi.org/10.1016/S0375-9601(01)00455-8
- 52.
Chiribella, G., D’Ariano, G.M., Perinotti, P.: Probabilistic theories with purification. Phys. Rev. A 81(6), 062348 (2010). https://doi.org/10.1103/PhysRevA.81.062348
- 53.
Janotta, P., Lal, R.: Generalized probabilistic theories without the no-restriction hypothesis. Phys. Rev. A 87(5), 052131 (2013). https://doi.org/10.1103/PhysRevA.87.052131
- 54.
Garner, A.J.P.: Phase and interference phenomena in generalised probabilistic theories. DPhil thesis, University of Oxford (2015)
- 55.
Spekkens, R.W.: Evidence for the epistemic view of quantum states: a toy theory. Phys. Rev. A 75(3), 032110 (2007). https://doi.org/10.1103/PhysRevA.75.032110
- 56.
Wilce, A.: A royal road to quantum theory (or thereabouts) (2016). http://arxiv.org/abs/1606.09306
- 57.
Simon, B.: Representations of Finite and Compact Groups. American Mathematical Society, Providence (1996)
- 58.
Gottesman, D.: Class of quantum error-correcting codes saturating the quantum Hamming bound. Phys. Rev. A 54(3), 1862–1868 (1996). https://doi.org/10.1103/PhysRevA.54.1862
- 59.
van Enk, S.J.: A toy model for quantum mechanics. Found. Phys. 37(10), 1447–1460 (2007). https://doi.org/10.1007/s10701-007-9171-3
- 60.
Pusey, M.F.: Stabilizer notation for Spekkens’s Toy theory. Found. Phys. 42(5), 688–708 (2012). https://doi.org/10.1007/s10701-012-9639-7
- 61.
Tuckerman, M.: Operators and numerical propagation methods (2002). URL http://www.nyu.edu/classes/tuckerman/mol.dyn/lectures/lecture_9/node1.html
- 62.
Graydon, M.A.: Quaternions and quantum theory. PhD thesis, University of Waterloo (2011). URL http://hdl.handle.net/10012/6168
- 63.
Goold, J., Huber, M., Riera, A., del Rio, L., Skrzypczyk, P.: The role of quantum information in thermodynamicsa topical review. J. Phys. A 49(14), 143001 (2016). https://doi.org/10.1088/1751-8113/49/14/143001
- 64.
Skrzypczyk, P., Short, A.J., Popescu, S.: Work extraction and thermodynamics for individual quantum systems. Nat. Commun. 5, 4185 (2014). https://doi.org/10.1038/ncomms5185
- 65.
Horodecki, M., Oppenheim, J.: Fundamental limitations for quantum and nanoscale thermodynamics. Nat. Commun. 4, 2059 (2013). https://doi.org/10.1038/ncomms3059
Acknowledgements
We thank George Knee and Benjamin Yadin for useful comments. We are grateful for financial support from the UK Engineering and Physical Sciences Research Council, the John Templeton Foundation, the Foundational Questions Institute, EU Collaborative Project TherMiQ (Grant Agreement 618074), the London Institute for Mathematical Sciences and Wolfson College, University of Oxford.
Author information
Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Branford, D., Dahlsten, O.C.O. & Garner, A.J.P. On Defining the Hamiltonian Beyond Quantum Theory. Found Phys 48, 982–1006 (2018). https://doi.org/10.1007/s10701-018-0205-9
Received:
Accepted:
Published:
Issue Date:
Keywords
- Hamiltonian
- Generalized probabilistic theories
- Energy
- Time evolution