Skip to main content
Log in

Uncertainty Principle on 3-Dimensional Manifolds of Constant Curvature

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

We consider the Heisenberg uncertainty principle of position and momentum in 3-dimensional spaces of constant curvature K. The uncertainty of position is defined coordinate independent by the geodesic radius of spherical domains in which the particle is localized after a von Neumann–Lüders projection. By applying mathematical standard results from spectral analysis on manifolds, we obtain the largest lower bound of the momentum deviation in terms of the geodesic radius and K. For hyperbolic spaces, we also obtain a global lower bound \(\sigma _p\ge |K|^\frac{1}{2}\hbar \), which is non-zero and independent of the uncertainty in position. Finally, the lower bound for the Schwarzschild radius of a static black hole is derived and given by \(r_s\ge 2\,l_P\), where \(l_P\) is the Planck length.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Kempf, A., Mangano, G., Mann, R.B.: Hilbert space representation of the minimal length uncertainty relation. Phys. Rev. D 52, 1108–1118 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  2. Bolen, B., Cavaglia, M.: (Anti-)de Sitter black hole thermodynamics and the generalized uncertainty principle. Gen. Relativ. Gravit. 37, 1255–1262 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Park, M.-I.: The generalized uncertainty principle in (A)dS space and the modification of Hawking temperature from the minimal length. Phys. Lett. B 659, 698–702 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Mignemi, S.: Extended uncertainty principle and the geometry of (anti)-de Sitter space. Mod. Phys. Lett. A 25, 1697–1703 (2010)

    Article  ADS  MATH  Google Scholar 

  5. Perivolaropoulos, L.: Cosmological horizons, uncertainty principle and maximum length quantum mechanics. Phys. Rev. D 95, 103523 (2017)

    Article  ADS  Google Scholar 

  6. Costa Filho, R.N., Braga, J.P.M., Lira, J.H.S., Andrade, J.S.: Extended uncertainty from first principles. Phys. Lett. B 755, 367–370 (2016)

    Article  ADS  Google Scholar 

  7. Trifonov D.A.: Position uncertainty measures on the sphere. In: Proceedings of the Fifth International Conference on Geometry, Integrability and Quantization, vol. 755, pp. 211–224. Softex, Sofia (2004)

  8. Golovnev, A.V., Prokhorov, L.V.: Uncertainty relations in curved spaces. J. Phys. A: Math. Gen. 37, 2765–2775 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Schürmann, T.: The uncertainty principle in terms of isoperimetric inequalities. Appl. Math. 8, 307–311 (2017)

    Article  Google Scholar 

  10. Schürmann, T., Hoffmann, I.: A closer look at the uncertainty relation of position and momentum. Found. Phys. 39, 958–963 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Chavel, I., Feldmann, D.: Spectra of domains in compact manifolds. J. Funct. Anal. 30, 198–222 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  12. Betz, C., Cámera, A., Gzyl, H.: Bounds of the first eigenvalue of a spherical cap. Appl. Math. Optim. 10, 193–202 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  13. Pinsky, M.A.: The first eigenvalue of a spherical cap. Appl. Math. Optim. 7, 137–139 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  14. Otsuki, T.: Isometric imbedding of Riemannian manifolds in a Riemannian manifold. J. Math. Soc. Jpn. 6, 221–234 (1954)

    Article  MATH  Google Scholar 

  15. Savo, A.: On the lowest eigenvalue of the Hodge Laplacian on compact, negatively curved domains. Ann. Glob. Anal. Geom. 35, 39–62 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  16. Artamoshin, S.: Lower bounds for the first Dirichlet eigenvalue of the Laplacian for domains in hyperbolic spaces. Math. Proc. Camb. Phil. Soc. 160, 191–208 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  17. Bambi, C., Urban, F.R.: Natural extension of the generalized uncertainty principle. Class. Quantum Grav. 25, 095006 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Reilly, R.: Applications of the Hessian operator in a Riemannian manifold. Indiana Univ. Math. J. 26, 459–472 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  19. Ling, J.: A lower bound of the first Dirichlet eigenvalue of a compact manifold with positive Ricci curvature. Int. J. Math. 17(5), 605–617 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Schürmann.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schürmann, T. Uncertainty Principle on 3-Dimensional Manifolds of Constant Curvature. Found Phys 48, 716–725 (2018). https://doi.org/10.1007/s10701-018-0173-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10701-018-0173-0

Keywords

Navigation