Skip to main content
Log in

Horizon Quantum Mechanics: Spherically Symmetric and Rotating Sources

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

The Horizon Quantum Mechanics is an approach that allows one to analyse the gravitational radius of spherically symmetric systems and compute the probability that a given quantum state is a black hole. We first review the (global) formalism and show how it reproduces a gravitationally inspired GUP relation. This results leads to unacceptably large fluctuations in the horizon size of astrophysical black holes if one insists in describing them as (smeared) central singularities. On the other hand, if they are extended systems, like in the corpuscular models, no such issue arises and one can in fact extend the formalism to include asymptotic mass and angular momentum with the harmonic model of rotating corpuscular black holes. The Horizon Quantum Mechanics then shows that, in simple configurations, the appearance of the inner horizon is suppressed and extremal (macroscopic) geometries seem disfavoured.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Casadio, R.: Localised particles and fuzzy horizons: A tool for probing Quantum Black Holes. arXiv:1305.3195 [gr-qc]

  2. Casadio, R.: What is the Schwarzschild radius of a quantum mechanical particle? Springer Proceedings in Physics 170, 225 (2016). arXiv:1310.5452 [gr-qc]

  3. Casadio, R., Giugno, A., Giusti, A.: Global and local horizon quantum mechanics. Gen. Rel. Grav. 49, 32 (2017). [arXiv:1605.06617 [gr-qc]]

    Article  ADS  MathSciNet  Google Scholar 

  4. Casadio, R., Scardigli, F.: Horizon wave-function for single localized particles: GUP and quantum black hole decay. Eur. Phys. J. C 74, 2685 (2014). [arXiv:1306.5298 [gr-qc]]

    Article  ADS  Google Scholar 

  5. Casadio, R., Micu, O., Scardigli, F.: Quantum hoop conjecture: black hole formation by particle collisions. Phys. Lett. B 732, 105 (2014). [arXiv:1311.5698 [hep-th]]

    Article  ADS  MathSciNet  Google Scholar 

  6. Casadio, R., Micu, O., Stojkovic, D.: Inner horizon of the quantum Reissner–Nordström black holes. JHEP 1505, 096 (2015). arXiv:1503.01888 [gr-qc]

  7. Casadio, R., Micu, O., Stojkovic, D.: Horizon wave-function and the quantum cosmic censorship. Phys. Lett. B 747, 68 (2015). arXiv:1503.02858 [gr-qc]

    Article  ADS  Google Scholar 

  8. Casadio, R., Giugno, A., Micu, O.: Horizon quantum mechanics: a hitchhiker’s guide to quantum black holes. Int. J. Mod. Phys. D 25, 1630006 (2016). arXiv:1512.04071 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  9. Casadio, R., Giugno, A., Giusti, A., Micu, O.: Horizon quantum mechanics of rotating black holes. Eur. Phys. J. C 77(5), 322 (2017). arXiv:1701.05778 [gr-qc]

  10. Szabados, L.B.: Quasi-local energy-momentum and angular momentum in general relativity. Living Rev. Relat. 12, 4 (2009)

    Article  ADS  Google Scholar 

  11. Casadio, R., Orlandi, A.: Quantum harmonic black holes. JHEP 1308, 025 (2013). arXiv:1302.7138 [hep-th]

  12. Mück, W., Pozzo, G.: Quantum portrait of a black hole with Pöschl-Teller potential. JHEP 1405, 128 (2014). arXiv:1403.1422 [hep-th]

  13. Dvali, G., Gomez, C.: Quantum compositeness of gravity: black holes, AdS and inflation. JCAP 01, 023 (2014). arXiv:1312.4795 [hep-th]

    Article  MathSciNet  Google Scholar 

  14. Dvali, G., Gomez, C.: Black Hole’s Information Group. arXiv:1307.7630

  15. Dvali, G., Gomez, C.: Black holes as critical point of quantum phase transition. Eur. Phys. J. C 74, 2752 (2014). arXiv:1207.4059 [hep-th]

  16. Dvali, G., Gomez, C.: Black hole’s 1/N hair. Phys. Lett. B 719, 419 (2013). arXiv:1203.6575 [hep-th]

  17. Dvali, G., Gomez, C.: Landau–Ginzburg limit of black hole’s quantum portrait: self similarity and critical exponent. Phys. Lett. B 716, 240 (2012). arXiv:1203.3372 [hep-th]

    Article  ADS  Google Scholar 

  18. Dvali, G., Gomez, C.: Black hole’s quantum N-portrait. Fortsch. Phys. 61, 742 (2013). arXiv:1112.3359 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  19. Dvali, G., Gomez, C., Mukhanov, S.: Black hole masses are quantized. arXiv:1106.5894 [hep-ph]

  20. Casadio, R., Giugno, A., Micu, O., Orlandi, A.: Thermal BEC black holes. Entropy 17, 6893 (2015). arXiv:1511.01279 [gr-qc]

    Article  ADS  MathSciNet  Google Scholar 

  21. Arnowitt, R.L., Deser, S., Misner, C.W.: Dynamical structure and definition of energy in general relativity. Phys. Rev. 116, 1322 (1959)

    Article  ADS  MathSciNet  Google Scholar 

  22. Thorne, K.S.: Nonspherical gravitational collapse: a short review. In: Klauder, J.R. (ed.) Magic Without Magic, p. 231. Freeman, San Francisco (1972)

    Google Scholar 

  23. Casadio, R., Giugno, A., Giusti, A.: Matter and gravitons in the gravitational collapse. Phys. Lett. B 763, 337 (2016). arXiv:1606.04744 [hep-th]

    Article  ADS  Google Scholar 

Download references

Acknowledgements

R.C. and A.G. are partially supported by the INFN grant FLAG. The work of R.C. and A.G. has also been carried out in the framework of activities of the National Group of Mathematical Physics (GNFM, INdAM). O.M. was supported by the grant LAPLAS 4.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto Casadio.

Additional information

This work was partly supported by INFN grant FLAG.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Casadio, R., Giugno, A., Giusti, A. et al. Horizon Quantum Mechanics: Spherically Symmetric and Rotating Sources. Found Phys 48, 1204–1218 (2018). https://doi.org/10.1007/s10701-018-0164-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10701-018-0164-1

Keywords

Navigation