Advertisement

Singularity Crossing, Transformation of Matter Properties and the Problem of Parametrization in Field Theories

  • A. Yu. Kamenshchik
Article
Part of the following topical collections:
  1. Black holes, Gravitational waves and Space Time Singularities

Abstract

We investigate particular cosmological models, based either on tachyon fields or on perfect fluids, for which soft future singularities arise in a natural way. Our main result is the description of a smooth crossing of the soft singularity in models with an anti-Chaplygin gas or with a particular tachyon field in the presence of dust. Such a crossing is made possible by certain transformations of matter properties. We discuss and compare also different approaches to the problem of crossing of the Big Bang–Big Crunch singularities.

Keywords

Cosmology Singularities Fields 

Notes

Acknowledgements

This work was partially supported by the RFBR Grant No. 17-02-01008.

References

  1. 1.
    Lifshitz, E.M., Khalatnikov, I.M.: Investigations in relativistic cosmology. Adv. Phys. 12, 185 (1963)ADSMathSciNetCrossRefGoogle Scholar
  2. 2.
    Hawking, S.W., Penrose, R.: The singularities of gravitational collapse and cosmology. Proc. R. Soc. Lond. A 314, 529 (1970)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Penrose, R.: Structure of Space-Time. Benjamin, New York (1970)zbMATHGoogle Scholar
  4. 4.
    Belinsky, V.A., Khalatnikov, I.M., Lifshitz, E.M.: Oscillatory approach to a singular point in the relativistic cosmology. Adv. Phys. 19, 525 (1970)ADSCrossRefGoogle Scholar
  5. 5.
    Misner, C.W.: Mixmaster universe. Phys. Rev. Lett. 22, 1071 (1969)ADSCrossRefzbMATHGoogle Scholar
  6. 6.
    Barrow, J.D., Galloway, G.J., Tipler, F.J.: The closed-universe recollapse conjecture. Mon. Not. R. Astron. Soc. 223, 835 (1986)ADSCrossRefzbMATHGoogle Scholar
  7. 7.
    Riess, A., et al.: Observational evidence from supernovae for an accelerating universe and a cosmological constant. Astron. J. 116, 1009 (1998)ADSCrossRefGoogle Scholar
  8. 8.
    Perlmutter, S.J., et al.: Measurements of Omega and Lambda from 42 high redshift supernovae. Astrophys. J. 517, 565 (1999)ADSCrossRefzbMATHGoogle Scholar
  9. 9.
    Sahni, V., Starobinsky, A.A.: Reconstructing dark energy. Int. J. Mod. Phys. D 15, 2105 (2006)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Kamenshchik, A.Y.: Quantum cosmology and late-time singularities. Class. Quantum Grav. 30, 173001 (2013)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Fernandez-Jambrina, L., Lazkoz, R.: Geodesic behaviour of sudden future singularities. Phys. Rev. D 70, 121503 (2004)ADSMathSciNetCrossRefGoogle Scholar
  12. 12.
    Fernandez-Jambrina, L., Lazkoz, R.: Classification of cosmological milestones. Phys. Rev. D 74, 064030 (2006)ADSMathSciNetCrossRefGoogle Scholar
  13. 13.
    Keresztes, Z., Gergely, L.A., Kamenshchik, A.Y., Gorini, V., Polarski, D.: Soft singularity crossing and transformation of matter properties. Phys. Rev. D 88, 023535 (2013)ADSCrossRefGoogle Scholar
  14. 14.
    Sen, A.: Rolling tachyon. J. High Energy Phys. 04, 048 (2002)ADSMathSciNetCrossRefGoogle Scholar
  15. 15.
    Padmanabhan, T.: Accelerated expansion of the universe driven by tachyonic matter. Phys. Rev. D 66, 021301 (2002)ADSCrossRefGoogle Scholar
  16. 16.
    Feinstein, A.: Power law inflation from the rolling tachyon. Phys. Rev. D 66, 063511 (2002)ADSCrossRefGoogle Scholar
  17. 17.
    Born, M., Infeld, L.: Foundations of the new field theory. Proc. R. Soc. Lond. A 144, 425 (1934)ADSCrossRefzbMATHGoogle Scholar
  18. 18.
    Gorini, V., Kamenshchik, A.Y., Moschella, U., Pasquier, V.: Tachyons, scalar fields and cosmology. Phys. Rev. D 69, 123512 (2004)ADSMathSciNetCrossRefGoogle Scholar
  19. 19.
    Bars, I., Chen, S.H., Steinhardt, P.J., Turok, N.: Antigravity and the big crunch/big bang transition. Phys. Lett. B 715, 278 (2012)ADSCrossRefGoogle Scholar
  20. 20.
    Bars, I., Steinhardt, P., Turok, N.: Sailing through the big crunch-big bang transition. Phys. Rev. D 89, 061302 (2014)ADSCrossRefGoogle Scholar
  21. 21.
    Wetterich, C.: Variable gravity universe. Phys. Rev. D 89, 024005 (2014)ADSCrossRefGoogle Scholar
  22. 22.
    Wetterich, C.: Eternal universe. Phys. Rev. D 90, 043520 (2014)ADSCrossRefGoogle Scholar
  23. 23.
    Dominis Prester, P.: Curing black hole singularities with local scale invariance. Adv. Math. Phys. 2016, 6095236 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Dominis Prester, P.: Field redefinitions, Weyl invariance and the nature of mavericks. Class. Quantum Grav. 31, 155006 (2014)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Keresztes, Z., Gergely, L.A., Kamenshchik, A.Y., Gorini, V., Polarski, D.: Will the tachyonic universe survive the big brake? Phys. Rev. D 82, 123534 (2010)ADSCrossRefGoogle Scholar
  26. 26.
    Carter, B.: Duality relation between charged elastic strings and superconducting cosmic strings. Phys. Lett. B 224, 61 (1989)ADSMathSciNetCrossRefGoogle Scholar
  27. 27.
    Vilenkin, A.: Effect of small scale structure on the dynamics of cosmic strings. Phys. Rev. D 41, 3038 (1990)ADSCrossRefGoogle Scholar
  28. 28.
    Keresztes, Z., Gergely, L.A., Kamenshchik, A.Y.: Paradox of soft singularity crossing and its resolution by distributional cosmological quantities. Phys. Rev. D 86, 063522 (2012)ADSCrossRefGoogle Scholar
  29. 29.
    Kamenshchik, A.Y., Moschella, U., Pasquier, V.: An alternative to quintessence. Phys. Lett. B 511, 265 (2001)ADSCrossRefzbMATHGoogle Scholar
  30. 30.
    Frolov, A.V., Kofman, L., Starobinsky, A.A.: Prospects and problems of tachyon matter cosmology. Phys. Lett. B 545, 8 (2002)ADSCrossRefzbMATHGoogle Scholar
  31. 31.
    Kamenshchik, A.Y., Pozdeeva, E.O., Vernov, S.Y., Tronconi, A., Venturi, G.: Transformations between Jordan and Einstein frames: bounces, antigravity, and crossing singularities. Phys. Rev. D 94, 063510 (2016)ADSMathSciNetCrossRefGoogle Scholar
  32. 32.
    Wagoner, R.V.: Scalar tensor theory and gravitational waves. Phys. Rev. D 1, 3209 (1970)ADSCrossRefGoogle Scholar
  33. 33.
    Kamenshchik, A.Y., Pozdeeva, E.O., Tronconi, A., Venturi, G., Vernov, S.Y.: Integrable cosmological models with non-minimally coupled scalar fields. Class. Quantum Grav. 31, 105003 (2014)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Kamenshchik, A.Y., Pozdeeva, E.O., Tronconi, A., Venturi, G., Vernov, S.Y.: Interdependence between integrable cosmological models with minimal and non-minimal coupling. Class. Quantum Grav. 33, 015004 (2016)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Fre, P., Sagnotti, A., Sorin, A.S.: Integrable scalar cosmologies I. Foundations and links with string theory. Nucl. Phys. B 877, 1028 (2013)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Sakharov, A.D.: Vacuum quantum fluctuations in curved space and the theory of gravitation. Sov. Phys. Dokl. 12, 1040 (1968)ADSGoogle Scholar
  37. 37.
    Cooper, F., Venturi, G.: Cosmology and broken scale invariance. Phys. Rev. D 24, 3338 (1981)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  38. 38.
    Steinwachs, C.F., Kamenshchik, A.Y.: One-loop divergences for gravity non-minimally coupled to a multiplet of scalar fields: calculation in the Jordan frame. I. The main results. Phys. Rev. D 84, 024026 (2011)ADSCrossRefGoogle Scholar
  39. 39.
    Kamenshchik, A.Y., Steinwachs, C.F.: Question of quantum equivalence between Jordan frame and Einstein frame. Phys. Rev. D 91, 084033 (2015)ADSCrossRefGoogle Scholar
  40. 40.
    Kamenshchik, A.Y., Pozdeeva, E.O., Tronconi, A., Venturi, G., Vernov, S.Y.: Integrable cosmological models with non-minimally coupled scalar fields. Class. Quantum Grav. 31, 105003 (2014)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  41. 41.
    Kamenshchik, A., Tronconi, A., Venturi, G.: Reconstruction of scalar potentials in induced gravity and cosmology. Phys. Lett. B 702, 191 (2011)ADSCrossRefGoogle Scholar
  42. 42.
    Lucchin, F., Matarrese, S.: Power law inflation. Phys. Rev. D 32, 1316 (1985)ADSCrossRefGoogle Scholar
  43. 43.
    Gasperini, M., Veneziano, G.: The Pre-big bang scenario in string cosmology. Phys. Rep. 373, 1 (2003)ADSMathSciNetCrossRefGoogle Scholar
  44. 44.
    Boisseau, B., Giacomini, H., Polarski, D.: Scalar field cosmologies with inverted potentials. J. Cosmol. Astropart. Phys. 1510, 033 (2015)ADSMathSciNetCrossRefGoogle Scholar
  45. 45.
    Starobinsky, A.A.: Can the effective gravitational constant become negative? Sov. Astron. Lett. 7, 36 (1981)ADSGoogle Scholar
  46. 46.
    Linde, A.D.: Gauge theories and variability of the gravitational constant in the early universe. JETP Lett. 30, 447 (1980)ADSGoogle Scholar
  47. 47.
    Kamenshchik, A.Y., Pozdeeva, E.O., Vernov, S.Y., Tronconi, A., Venturi, G.: Bianchi-I cosmological model and crossing singularities. Phys. Rev. D 95, 083503 (2017)ADSCrossRefGoogle Scholar
  48. 48.
    Chimento, L.P.: General solution to two-scalar field cosmologies with exponential potentials. Class. Quantum Grav. 15, 965 (1998)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  49. 49.
    Russo, J.G.: Exact solution of scalar tensor cosmology with exponential potentials and transient acceleration. Phys. Lett. B 600, 185 (2004)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  50. 50.
    Elizalde, E., Nojiri, S., Odintsov, S.D.: Exact solution of scalar tensor cosmology with exponential potentials and transient acceleration. Phys. Rev. D 70, 043539 (2004)ADSCrossRefGoogle Scholar
  51. 51.
    Rubano, C., Scudellaro, P., Piedipalumbo, E., Capozziello, S., Capone, M.: Exponential potentials for tracker fields. Phys. Rev. D 69, 103510 (2004)ADSCrossRefGoogle Scholar
  52. 52.
    Andrianov, A.A., Cannata, F., Kamenshchik, A.Y.: General solution of scalar field cosmology with a (piecewise) exponential potential. J. Cosmol. Astropart. Phys. 1110, 004 (2011)ADSCrossRefGoogle Scholar
  53. 53.
    Piedipalumbo, E., Scudellaro, P., Esposito, G., Rubano, C.: On quintessential cosmological models and exponential potentials. General Relat. Gravit. 44, 2611 (2012)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  54. 54.
    Carrasco, J.J.M., Chemissany, W., Kallosh, R.: Journeys through antigravity? J. High Energy Phys. 1401, 130 (2014)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  55. 55.
    Kallosh, R., Linde, A.: Hidden superconformal symmetry of the cosmological evolution. J. Cosmol. Astropart. Phys. 1401, 020 (2014)ADSMathSciNetCrossRefGoogle Scholar
  56. 56.
    Penrose, R.: Cycles of Time: An Extraordinary New View of the Universe. Bodley Head, London (2010)zbMATHGoogle Scholar
  57. 57.
    Anguige, K., Tod, K.P.: Isotropic cosmological singularities: I. Polytropic perfect fluid spacetimes. Ann. Phys. 276, 257 (1999)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  58. 58.
    Anguige, K., Tod, K.P.: Isotropic cosmological singularities: II. The Einstein–Vlasov system. Ann. Phys. 276, 294 (1999)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  59. 59.
    Tod, K.P.: Isotropic cosmological singularities: other matter models. Class. Quantum Grav. 20, 521 (2003)ADSMathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Dipartimento di Fisica e AstronomiaUniversità di Bologna and INFNBolognaItaly
  2. 2.L.D. Landau Institute for Theoretical Physics of the Russian Academy of SciencesMoscowRussia

Personalised recommendations