Skip to main content
Log in

Completing the Physical Representation of Quantum Algorithms Provides a Quantitative Explanation of Their Computational Speedup

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

The usual representation of quantum algorithms, limited to the process of solving the problem, is physically incomplete. We complete it in three steps: (i) extending the representation to the process of setting the problem, (ii) relativizing the extended representation to the problem solver to whom the problem setting must be concealed, and (iii) symmetrizing the relativized representation for time reversal to represent the reversibility of the underlying physical process. The third steps projects the input state of the representation, where the problem solver is completely ignorant of the setting and thus the solution of the problem, on one where she knows half solution (half of the information specifying it when the solution is an unstructured bit string). Completing the physical representation shows that the number of computation steps (oracle queries) required to solve any oracle problem in an optimal quantum way should be that of a classical algorithm endowed with the advanced knowledge of half solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Notes

  1. Note that Alice knows the function \(s\left( b\right) \), the only thing she does not know is the problem setting selected by Bob.

  2. We are making reference to game theory, whose object is studying the mathematical models of conflict and cooperation between intelligent rational decision makers.

References

  1. Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Proc. 28th Annual ACM Symposium on the Theory of Computing, ACM Press, New York, pp. 212–219 (1996)

  2. Ekert, A.K.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67, 661 (1991)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Castagnoli, G., Finkelstein, D.R.: Theory of the quantum speedup. Proc. R. Soc. A 1799(457), 1799–1807 (2001)

    Article  ADS  MATH  Google Scholar 

  4. Castagnoli, G.: The quantum correlation between the selection of the problem and that of the solution sheds light on the mechanism of the quantum speed up. Phys. Rev. A 82, 052334–052342 (2010)

    Article  ADS  Google Scholar 

  5. Castagnoli, G.: Highlighting the mechanism of the quantum speedup by time-symmetric and relational quantum mechanics. Found. Phys. 46(3), 360–381 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Castagnoli, G.: On the relation between quantum computational speedup and retrocausality. Quanta 5(1), 34–52 (2016)

    Article  MathSciNet  Google Scholar 

  7. Castagnoli, G.: A retrocausal model of the quantum computational speedup. In: Proceedings of the 92nd Annual Meeting of the Pacific Division of the American Association for the Advancement of Science, Quantum Retrocausation III, Program organizer Daniel Sheehan (2016)

  8. Deutsch, D.: Quantum theory, the Church Turing principle and the universal quantum computer. Proc. R. Soc. A 400, 97–117 (1985)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Rovelli, C.: Relational quantum mechanics. Int. J. Theor. Phys. 35, 637–658 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  10. Rovelli, C.: Relational quantum mechanics (2011). http://xxx.lanl.gov/pdf/quant-ph/9609002v2

  11. Rovelli, C., Smerlak, M.: Relational EPR. Preprint: arXiv:quant-ph/0604064

  12. Bennett, C.H., Bernstein, E., Brassard, G., Vazirani, U.: Strengths and weaknesses of quantum computing. SIAM J. Comput. 26(5), 1510–1523 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  13. Long, G.L.: Grover algorithm with zero theoretical failure rate. Phys. Rev. A 64, 022307–022314 (2001)

    Article  ADS  Google Scholar 

  14. Toyama, F.M., van Dijk, W., Nogami, Y.: Quantum search with certainty based on modified Grover algorithms: optimum choice of parameters. Quantum Inf. Process. 12, 1897–1914 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Deutsch, D., Jozsa, R.: Rapid solution of problems by quantum computation. Proc. R. Soc. A 439, 553–558 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Simon, D.: On the power of quantum computation. In: Proceedings of the 35th Annual IEEE Symposium on the Foundations of Computer Science, pp. 116–123 (1994)

  17. Kaye, P., Laflamme, R., Mosca, M.: An Introduction To Quantum Computing, pp. 146–147. Oxford University Press, Oxford (2007)

    MATH  Google Scholar 

  18. Shor, P.: Algorithms for quantum computation: Discrete log and factoring. In: Proceedings of the 35th Annual IEEE Symposium on the Foundations of Computer Science, pp. 124–131 (1994)

  19. Wheeler, J.A., Feynman, R.P.: Interaction with the absorber as the mechanism of radiation. Rev. Mod. Phys. 17, 157 (1945)

    Article  ADS  Google Scholar 

  20. Watanabe, S.: Symmetry of physical laws. Part III. Prediction and retrodiction. Rev. Mod. Phys. 27(2), 179–186 (1955)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Aharonov, Y., Bergman, P.G., Lebowitz, J.L.: Time symmetry in the quantum process of measurement. Phys. Rev. B 134, 1410–1416 (1964)

    Article  ADS  MathSciNet  Google Scholar 

  22. Cramer, J.: The transactional interpretation of quantum mechanics. Rev. Mod. Phys. 58, 647 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  23. Dolev, S., Elitzur, A. C.: Non-sequential behavior of the wave function (2001). arXiv:quant-ph/0102109 v1

  24. Aharonov, Y., Vaidman, L.: The two-state vector formalism: an updated review. Lect. Notes Phys. 734, 399–447 (2008)

    Article  ADS  Google Scholar 

  25. Aharonov, Y., Popescu, S., Tollaksen, J. A.: Time-symmetric formulation of quantum mechanics. Phys. Today (November issue) 27–32 (2010)

  26. Aharonov, Y., Cohen, E., Elitzur, A.C.: Can a future choice affect a past measurement outcome? Ann. Phys. 355, 258–268 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. Fredkin, E., Toffoli, T.: Conservative logic. Int. J. Theor. Phys. 21, 219–253 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  28. Landauer, R.: Irreversibility and heat generation in the computing process. IBM J. Res. Dev. 5(3), 183–191 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  29. Finkelstein, D.R.: Space-time structure in high energy interactions. In: Gudehus, T., Kaiser, G., Perlmutter, A. (eds.) Fundamental Interactions at High Energy. Gordon & Breach, New York, pp. 324–338 (1969)

  30. Bennett, C.H.: The thermodynamics of computation—a review. Int. J. Theor. Phys. 21, 905–940 (1982)

    Article  Google Scholar 

  31. Aaronson, S., Ambainis, A.: Forrelation: a problem that optimally separates quantum from classical computing (2014). arXiv:1411.5729

  32. Grover, L.K.: From Schödinger’s Equation to the quantum search algorithm. arXiv:quant-ph/0109116 (2001)

  33. Venagas-Andraca, S.E.: Quantum walks: a comprehensive review (2012). arXiv:1201.4780

  34. Jozsa, R.: Entanglement and quantum computation. In: Huggett, S., Mason, L.K.P., Tod, L.K.P., Tsou, S.T., Woodhouse, N.M.J. (eds.) Geometric Issues in the Foundations of Science. Oxford University Press, Oxford (1997)

    Google Scholar 

  35. Jozsa, R., Linden, N.: On the role of entanglement in quantum computational speed-up. Proc. R. Soc. A 1097 (2002)

  36. Vedral, V.: The elusive source of quantum effectiveness

  37. Morikoshi, F.: Problem-solution symmetry in Grover’s quantum search algorithm. Int. J. Theor. Phys. 50, 1858–1867 (2011)

    Article  Google Scholar 

  38. Workshop on Quantum Foundations and Quantum Information—Theory and Experiment. Yakir Aharonov, Avshalom Elitur, and Eliahu Cohen organizers. https://indico.cern.ch/event/559774/page/8707-workshop-on-quantum-foundations-and-quantum-information

  39. Cay, Y., Le, H.N., Scarani, V.: State complexity and quantum computation (2015). arXiv:1503.04017v2

  40. Price, H., Wharton, K.: Disentangling the quantum world (2015). arXiv:1508.01140v2

  41. Finkelstein, D.R.: Private communication

Download references

Acknowledgements

Thanks for useful discussions and comments are due to Eli Cohen, Artur Ekert, Avshalom Elitzur, David Finkelstein, Daniel Shehan, and Ken Wharton.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuseppe Castagnoli.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Castagnoli, G. Completing the Physical Representation of Quantum Algorithms Provides a Quantitative Explanation of Their Computational Speedup. Found Phys 48, 333–354 (2018). https://doi.org/10.1007/s10701-018-0146-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10701-018-0146-3

Keywords

Navigation