# What is Quantum Mechanics? A Minimal Formulation

- 386 Downloads
- 1 Citations

## Abstract

This paper presents a minimal formulation of nonrelativistic quantum mechanics, by which is meant a formulation which describes the theory in a succinct, self-contained, clear, unambiguous and of course correct manner. The bulk of the presentation is the so-called “microscopic theory”, applicable to any closed system *S* of arbitrary size *N*, using concepts referring to *S* alone, without resort to external apparatus or external agents. An example of a similar minimal microscopic theory is the standard formulation of classical mechanics, which serves as the template for a minimal quantum theory. The only substantive assumption required is the replacement of the classical Euclidean phase space by Hilbert space in the quantum case, with the attendant all-important phenomenon of quantum incompatibility. Two fundamental theorems of Hilbert space, the Kochen–Specker–Bell theorem and Gleason’s theorem, then lead inevitably to the well-known Born probability rule. For both classical and quantum mechanics, questions of physical implementation and experimental verification of the predictions of the theories are the domain of the macroscopic theory, which is argued to be a special case or application of the more general microscopic theory.

## Keywords

Quantum mechanics Hilbert space Quantum incompatibility## References

- 1.Friedberg, R., Hohenberg, P.: Compatible quantum theory. Rep. Prog. Phys.
**77**, 092001 (2014)ADSMathSciNetCrossRefGoogle Scholar - 2.Kochen, S.: A reconstruction of quantum mechanics. Found. Phys.
**45**, 557 (2015)ADSMathSciNetCrossRefMATHGoogle Scholar - 3.Birkhoff, G., von Neumann, J.: The logic of quantum mechanics. Ann. Math.
**37**, 823 (1936)MathSciNetCrossRefMATHGoogle Scholar - 4.Griffiths, R.B.: Consistent Quantum Theory. Cambridge University Press, Cambridge (2002)MATHGoogle Scholar
- 5.Bell, J.S.: On the problem of hidden variables in quantum mechanics. Rev. Mod. Phys.
**38**, 447 (1966)ADSMathSciNetCrossRefMATHGoogle Scholar - 6.Kochen, S., Specker, E.: The problem of hidden variables in quantum mechanics. J. Math. Mech.
**17**, 59–87 (1967)MathSciNetMATHGoogle Scholar - 7.Mermin, N.D.: Simple unified form for the major no-hidden-variables theorems. Phys. Rev. Lett.
**65**, 3373 (1990)ADSMathSciNetCrossRefMATHGoogle Scholar - 8.Gleason, A.M.: Measures on the closed subspaces of a Hilbert space. J. Math. Mech.
**6**, 885 (1957)MathSciNetMATHGoogle Scholar - 9.von Neumann, J.: Mathematical Foundations of Quantum Mechanics, vol. 2. Princeton University Press, Princeton (1996)MATHGoogle Scholar
- 10.Preskill, J.: Lecture Notes for Physics 219: Quantum Information and Computation (2015). http://www.theory.caltech.edu/people/preskill/index.html
- 11.Bub, J., Pitowsky, I.: In: S. Saunders (ed.) Many Worlds?: Everett, Quantum Theory, and Reality, pp. 433–459. Oxford University Press, Oxford (2010)Google Scholar
- 12.Schrödinger, E.: In: Mathematical Proceedings of the Cambridge Philosophical Society, vol. 31, pp. 555–563. Cambridge University Press (1935)Google Scholar
- 13.Schrödinger, E.: In: Mathematical Proceedings of the Cambridge Philosophical Society, vol. 32, pp. 446–452. Cambridge University Press, Cambridge (1936)Google Scholar
- 14.Hughston, L.P., Jozsa, R., Wootters, W.K.: A complete classification of quantum ensembles having a given density matrix. Phys. Lett. A
**183**(1), 14 (1993)ADSMathSciNetCrossRefGoogle Scholar - 15.Wootters, W.K., Zurek, W.H.: The no-cloning theorem. Phys. Today
**62**(2), 76 (2009)CrossRefGoogle Scholar - 16.Bub, J.: Quantum probabilities as degrees of belief. Stud. Hist. Philos. Sci. Part B
**38**(2), 232 (2007)MathSciNetCrossRefMATHGoogle Scholar - 17.Feynman, R.P., Leighton, R.B., Sands, M.: The Feynman Lectures on Physics, vol. 3. Addison-Wesley, Reading, MA (2006)MATHGoogle Scholar
- 18.Zeh, H.D.: On the interpretation of measurements in quantum theory. Found. Phys.
**1**, 69 (1970)ADSCrossRefGoogle Scholar - 19.Zurek, W.H.: Decoherence, einselection, and the quantum origins of the classical. Rev. Mod. Phys.
**75**, 715 (2003)ADSMathSciNetCrossRefMATHGoogle Scholar - 20.Gell-Mann, M., Hartle, J.B.: Classical equations for quantum systems. Phys. Rev. D
**47**, 3345 (1993)ADSMathSciNetCrossRefGoogle Scholar - 21.Landau, L., Lifshitz, E.: Course of Theoretical Physics: Vol.: 3: Quantum Mechanics: Non-relativistic Theory. Pergamon Press, Oxford (1965)MATHGoogle Scholar
- 22.Peres, A.: Quantum Theory: Concepts and Methods, vol. 72. Springer, Berlin (1995)MATHGoogle Scholar
- 23.Bell, J.: Against ‘measurement’. Phys. World
**3**(8), 33 (1990)CrossRefGoogle Scholar - 24.Brukner, Č., Zeilinger, A.: Operationally invariant information in quantum measurements. Phys. Rev. Lett.
**83**(17), 3354 (1999)ADSMathSciNetCrossRefMATHGoogle Scholar - 25.Fuchs, C.A.: arXiv:1003.5209 (2010)
- 26.Fuchs, C.A., Mermin, N.D., Schack, R.: An introduction to QBism with an application to the locality of quantum mechanics. Am. J. Phys.
**82**(8), 749 (2014)ADSCrossRefGoogle Scholar - 27.Dirac, P.A.M.: The Principles of Quantum Mechanics. Oxford University Press, Oxford (1981)MATHGoogle Scholar
- 28.Everett, H.I.: Relative state formulation of quantum mechanics. Rev. Mod. Phys.
**29**, 454 (1957)ADSMathSciNetCrossRefGoogle Scholar - 29.Griffiths, R.B.: Consistent histories and the interpretation of quantum mechanics. J. Stat. Phys.
**36**, 219 (1984)ADSMathSciNetCrossRefMATHGoogle Scholar - 30.Omnès, R.: Consistent interpretations of quantum mechanics. Rev. Mod. Phys.
**64**(2), 339 (1992)ADSMathSciNetCrossRefGoogle Scholar - 31.de Broglie, L.: The principles of the new undulatory mechanics. J. Phys. Rad.
**7**, 321 (1926)CrossRefGoogle Scholar - 32.Bohm, D.: A suggested interpretation of the quantum theory in terms of “hidden” variables. I. Phys. Rev.
**85**, 180 (1952)ADSMathSciNetCrossRefMATHGoogle Scholar - 33.Ghirardi, G.C., Rimini, A., Weber, T.: Unified dynamics for microscopic and macroscopic systems. Phys. Rev. D
**34**(2), 470 (1986)ADSMathSciNetCrossRefMATHGoogle Scholar - 34.Hartle, J.B.: arXiv preprint arXiv:gr-qc/0508001 (2005)